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Introduction

The past five years of this project hive been devoted o

of qgunllative -theorius of the Fundamental electronic structure of pure and.

impure seniconductors.- The basic theoretical tools and also conclusions

relating to chiefly photoemission type experiments and to some extent

spectroscopy of pure I-VI and Il-V compounds are presented, in Chapters 1

and 2 of this reporc,-e Basic complete work relating to adsorbates and their

spectra are reported in Chapter 3. Several related studies are being com-

pleted at this point a d several articles relating to these studies are

being prepared for pub ication.

offz



Cka~ter 1
Intr duct ior

) This invest.gation has the purpose of performing

self-consistent energy band calculations on some of the II-VI

comrounds, such as cadmium sulfIde, zinc oxide, and zinc sulfide.

There are mainy nractical and theoretical rasons

fcr interest in thcse materials.

-Tese materials have applications as phosphors (ZnS

an'" C1S), as infrared detectors (ZnS), i. phitovoltaic cells (CdS-

Cu S or CdS-CdTe hetero iunctions), in batterics (ZnO), as FETs2

(CdS), in heteroJunction lasers (CdS), and even as acoustic

amolifiers (CdS).

T ey are of considerable theoretical interest as

.. ... mDes of wide band gp solids, intermediatc be); ccn

the covalent III-V semiccnductors and the more ion.ic I-VII

insulators. They serve is a test of calculational methods previously

used on tha lighter III-.' compounds and other compound simpler

than these II..VI cow.pods.
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In particular, the occupied d-levels, which lie in anergy near the

top of the valence levels, complicate the picture. The positions of

the d-bands have not been correctly predicted in previous ab initio

calculations, and in fact some methods fall qualitatively by not

obtaining the proper ordering of the valence s,p and d levels.

The II-VI compounds have also been of theoretical interest

as excitonlc systems. High densities of such electron-hole complexes

have been produced and observed in CdS. The electron-hole liquid has

been observed and studied in CdS as well.

In addition, some very interesting masnetic properties

in CuC1 and CdS have recently been observed. This is the background

of these experimental studies. Anomalous diamagnetism has been

observed in CuCl under rapid pressure and temperature cycling. In

some samples, up to 50% of the magnetic flux is excluded. This occurs

at high temperatures (150 10 ) and cannot be explained !'y ordinary

divmegnetism. The only currently known phenomenon that can explain

this is superconductivity.



It's clear that this would have to be superconductivity

of dilfferent origin. Acoustlic phonons, the known mechanism,

are too low in energy to bind electrons at such high tempneratures.

Models using some other form of interaction to pair electrons

seem to be necessary. Some form of excitonic binding is proposed

in many of these models. One of the most well-known such models,

the Allender-Bray-3ardeen model, requires a metal and a

semiconductor to exist in very close proximity. Since CuC1 can

disproportionate via the reaction 2CuCl Cu + CuCI , this model
2

has appealed to many. Howi-, cadmium sulfide, which has been

observed to have only one valence state and is nct believed to

disproportionate, hc.s shown similar anomalous diamagnetism. The

law of parsimony is, therefore, against the metal-semiconductor

sandwich idea. Also, in both CuCI and CdS, impurities clearly

play a major role. Sufficiently clean samples display no

Interesting behaviour at all. And to make life even more

interesting, cadmium sulfide also becomes a ferromagnet under a

high (4o0 klogauss) applied field.



AM' other 3 c~l, proposed by "ishop and Overhauser . ), involves

the interaction mediated by the optical phonons. This mechanism

has deep attractive potential wells, abozit 10 mev in depth for

a spacInZ of 250 angstroms. This suggests the possibility of

bound states, and the pairing is considerably stronger, around

a factor of ten, than the pairing from acoustic phonons in

the typical Cooper pair in the highest temperature superconductors

].nown, nt approximately 20 detcrees Kelvin. This idea is even more

intriguinS in the light of the fact that both CdS and CuCI are

stronsly polar com-ounds. This suggest that these phenomena

would not be seen in the less polar III-V compounds and in

elemcntal semiconduetors sch as Ge and Si. They've been

investigated most thoroughly and indeed, such effects have not

been observed.



Chapter One

The calculations discussed here are based on

Hartree-Fock theory, the most common approximation to

the exact non-relativistic theory of a many-electron system.

I'll discuss the theory and its applications to crystalline

solids. The specializatibn of Hartree-Fock theory used

in these calculations, the method of local orbitals,

deserves and gets a chapter of its own.

The original problem is finding exact solutions

to the Schrodinger equtation for a many-electron system,

This is impossible, if the universe is as small as we think

it is. Consider the wavefunction, which is a 3N dimensional

function if there are N electrons. Dividing each axis into,

say, 100 units, in order to numerically integrate and

6N
differentiate, we need to record 10 entries, The same

problem arises if we try to describe the wavefunction by
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sets of orthofnoLl fucn-tons. .0 is just too big a number.

Quantum mechanics is ,alan;R.t us. The upper limit for the

2
rate of information flow in a computer of mass IN is Mc /h

(h = Plnnck's constant, c = speed of light), in bits per

second. It's not hard to see that macroscopic physical

systems cannot b.e exactly simulated by digital computers.

I emphosize the word digital, since the electron is an

excelicnt analog of itself.

Such a digital simulation would be useless even

if it could be done. As suggested, the real solid simulates

itself perfectly. The Goal of physics is to explain some

set of cccurrenccs in terms of a few, relatively simple

ideas, rather than making a model isomorphic with the universe

end Just as confusing.

We begin to clear away some complications by

using the Born-Oppenhaimer approximation. This neglects

any relationship between the motion of the electrors and

the motion of the nuclei. ahis , valid simplification, since

3 5
the nuclei range from 10 *o 10 times heavier than on electron.



We can express the N-electron wavefunction

as a function of the electronic coordinates alone:

Here contains the position and spin coordinates of the

ith electron. We write the Schrodinger equation for this

wavefunction:

H ( ~ (.A ~ / E*~' (1.2)

Here, 11 is the non-relativistic Hamiltonian expressed in

2
atomic units. In this system of units, = 1, e = 2, and

the mass of the electron is one-half. The unit of distance

is one bohr (.529 angstroms) and the unit of energy is the

rydbcrg (13.6 ev).

(1.3

and 2

CX j

I~~~ £ 2J Xsi-. 11

H is independent of the electron coordinates, and has been
n

assumed to be a constant, as per the Born-Oppenheimner

approximation.



The upper case chnracters refer to nuclear

properties: Z is the atomic number, R is the nuclear position

( usually assumed to be fixed, like Pimlico) and M is the

nuclear mass. The lower case characters describe properties

oC the electrons. ).is the coordinate of the ith elecron.
A,

The atomic numbers of the atoms under consideration

are relatively low, and since in any event it is the valence

electrorns that are of pri.ary interest, the non-relativistic

nature of the !Iniltonan ray be acceptable.

The fundamental approxi, ation, now applied, is the

independent raticlc model. In truth, in the real solution,

the variables are not separable. We must assume that they are,

or more exactly that the true wavefunction can be well-

approxiated by 'his rmodel. The independent particle model -ays

that the electron is acted on by the average of the other

elec'trons. The N-electron wavefunction is expressed as a product

of one-electron i-'avefunctlons, or as a linear combination of

such products. A simple example is the Hartree wavef unction:

Al '/ / -2 91 N' /10
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Since electrons are fermions, this N-electron wovefu-nction must

be antisymmetric. Any intorchange of two particles must reverse

the sign of the wavefunction. The simplest way to antisymmetrize

is to use the determinant of a matrix whose elements are

f' (1.6)

Not all suc rare spin eigenstates, but fortunately we hv

here closed-shell systems that can be expressed as single-

dctcrmlnerntal wavcfunc tionc.

For ay arbtrar , e can find the e>:pectation

value of the iism1ltonian. It is a sum of one- and two- par$Acle

integrals :

P is a permutation operator, constructed so that

SI ,. , / .4 The terms i=j are not a Drobem since the

self-energy cancels the 'self-exchange.
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The expvectatioln value of- tic.( !;amilton~anl, <V /' call be

minimized by varying the spinorbitals. It has been shown that

(qNJ I/'/Y 2 z "(.9)

where E is the energy of the exact ground statc.

We vary the orbitals, but take care to Reep them

orthogo=al, for convenience and without loss of generality. This

is done "y using Lagrange multipliers. The objective is to obtain

the Lowest upper bound to the exact non-relativistic energy.

We define the functional

and require that tile variation of L = 0 for £ =1, ...

This yields a set of 1N coupled nonlinear

IntesrodIfferentinl equations k1'nown as the Hartree-Fock equations.

+ 22V (J. - kx# J J' A, J

J and Y have the familiar Coulomb and exchange operator forms.

J 42

These eqolat'ions r.y be wrltten in matrix formn;

(1 S 1-)



F is the I'xN m&,rix of the Fock operator. For closed

uhells, it is Hermitian, so S may be diagonalized by a unitary

transformation. Fortunately, the II-VI compounds have closed

shells. We may write, Fl/4 > = 6, /;.> • (1.15)

Combining this expression with equation 1.7 gives the Hartree-Fock

ground state energy,

N - . ,

E . (1 /2)2 . +(f )J > (1.16)
HF A4

The C. are the single-particle energies, almost. Koopman's

theorem states that given a variationally stationary state

formed from N simultaneous spinorbital (pseudo)eigenfunctions

of the N particle Fock operator F, the states Y and V I

formed by altering the list of occupied elGeynfunctions of F by

one entry, are stationary with respect to further variation of

that spinorbital whose occupancy has been altered. If we

neglect relaxation effects, 6. is the entire change in system
A

energy when an electron is added or removed.

In order to equate the C. 5 with single-particle
A

energies, we must also bssume that relaxation effects are small -

that the other occunied orbitals change only slightly when an
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There ore such changes, sinco the 'Fock ocratu i runctional

of all or' its own solutIons, and chanigni one ot thcn must

change all. The question is, how much? These alaxation effects

will be discussed in a later section.



The Method of Local Orbitals

The method of local orbitals is a variational

technique in which solutions to the Hartree-Fock equaticns

are sought for a small subsystem of the system of interest,

with the caveat that all such solutions found must be contained

within the occupied Fock space of the original 3ystcm. Sets of

such local orbitals, which are not orthogonal, can then

be assigned to each subunit of the larger system using the

translational invariance of the Fock1-Dirac density matrix,

thus spanning the occupied Hilbert space of that system.

A single noniterative rotation of the local orbitals within

this occupied space then yields the exact self-consistent

solutions for the original Fock operator.

If £ . . ): J).,h is the set of local

orbitals sntisfying the Hartree-Fock equations for an n-clectron

system, then F O (3,1)
T .d) J

The Fock-Dirac density o~er ,tor for the equation is



I ,

S is the Inverse of the overlap matrix S.

Rho (.,) is aprojection operator ( >a,.:,yJ,,

chosen s,.ch that Owe- y orbital 49 i,, the occupied space

and -X=O for any orbital 'X in the virtual space. This means

that for any one-electron operator Lo the projection of L

onto thc K:rtree-Fock tranifold will satisfy

for ilny occupied orbital pf andy L3S=O for any virtual orbital fo.

Another approach, rigorously developed by Gilbert ( ),

begins by Introducing modified Hartree-Fock equations of the form
1 1

+yAy )4;-. . (3.5)

Above, A is an as yet unspecified Hermitian operator and rho

is the 'dia-onal' ( x equals x prime) form of the Fock-Dirac

density operator ( ). We see that rho is idempotent, Hermitian,

and projects onto occupied Fvck space. Because of this last

property, it can be showrn that' the occupied ei-enfunctions of



the modified Hartree-Fock equation lie entirely within the

occupied Fock space of the unmodified Hartree-Fock equations,

Sol y 1 0 " (3.6)

There is no Koopmanls theorem for this modified

equation, and so the ts cannot be interpreted as being nearly

the particle energies, as they can in the regular Hartree-Fock

equations. The total energy of the subsystem still has significance

since a unitary transformation within occupied Fock space

leaves the trace of Hermitian operstors such as the amiltonian

invaricnt.

The properties of the 4. awill vary with the choice

of A. We are looking for functions that are localized on specific

lattice sites of a crystal. In order to decide which operator

best fulfills such a purpose, we need to consider the

minimization of a functional .

subject to the variational constraints <a' -(.Y =0:

=o =o o37)

Here we can use the method of Lagrange multipliers. The integral



constraints of equation 3.? nrc token into account by the

praacters ? . , and the constraInts that involve exlicit

functions of I( in equation 3.7 are taken care of by Laoronge

functions t(x) and 'WA/

We obtain

:~ ~ 0 t7 (<)- /) )3"fAl
- ). 9 L{((X/'-c -) -

!.ultiplying on the left by (I-y), .e see

and (1- ) (I -y). . f or all,.' (3.10)

anzd so(YI i+'/'ZX) =(3.11)

k k

Substituting cquation 3.11 into 3.3, ue g.et

= (:3.12)

which may be rewritten as 6/k> = ? 1/. (3.13)

",7-' ' j

4ne r e 1(3.)

A unitary transformation gives

S' H'> (3.15)

Since we no,., know ho,., to rinilze any chosen Fferinitian



functional 4 we can now 8et ba to the true problem. Let

A=G- F, so that L F',A? G. 0 (3.6)

We can now Mlnimize.kand solve equation 3.5 at the same time,

and so ray pic111e1t o stisfy physical .easoning.

We choose A so that the solutions are localized on a site,

usually by picking A to be some potential well centered on the

site. The Fock operator can be separated into F the atomic

Fock operator for the site s, and U , an external potential
$

operator for the site s. We usually pick the localizing potential,

A, to be -U . The local orbitals equation is no':-
8

F + I/ J, (3-17)

This isn't an obvious improvement over the original

Hartree-Fock equation, but it allows a systematic approximation

that simplifies greatly the Hartree-Fock problem without inducing

undue error. The left side of equation 3.17 can be analyzed by

t.he order of the intcrsite overlap. The Fock-Dirac density

++, *
operator is (3. 18

withl V the interatomic overlap matrix.
3A



J A%~ .(e i (3-19)7<j,. : 34 1,, - .<.<" >

As discussed In Lo.:din ( ), m ;,.ay be exrinded in a power
-I

series in V \/= -) - s,' + ... (3.20)

Expanding the local orbitals equation and divcardrig second

order and greater in Intersite overlap ( ) gives

+ 3 0 (3.21)

L

l,- "2 ---- L- 2 -

As self-consx:itency is aproached, the last two terms of equation

3.21 tend to cancel. Theref*:-e, the Fock srace rotation changes

Bloch wavefunctions into atomic-like wavefunctions that are

eigenfunctions of the atomic Fock operator.

We procede to localize a physically realistic

number of electrons on each site. In cadmium sulfide, we choose

to have 46 electrons on the cdiaium site and 1.8 on the sulfur,

approximating an ionic charge distribution ( overlap and diffuse

valence orbitals parmit ccmplete covalency if' needed, however).

We have achieved sever.1 advantages. The problem is

computationally simplified, since the equation being iterated



Z0

does not have to rorUray the full conple.Itles of the solid,

and since the local orbitals are recognizably modified atomic

orbitals and aid In picturing chemical bondng. This approach

has use as a beginninig in looking at amorphous substances, which

have only a short-range order.

The local orbitals are calculated using the program

called LOPAS writtan by Kunz. A basis function expansion of

Slater orbitals (STOs) Is used for the radial part of the local

orbital while a spherical harmonic describes the angular behavior.

We usually take the and . from Pagus et al ) where

optimized basis sets have been computed for the atomic or ionic

system appropriate to the solid in question. In many cases, ire

will rshange this basis set to cochieve localization, considering

at the same time the total energy of the subsystem.

The expansion coefficient." is solved by the matrix

method of Roothean ( ).

Equation 3.21 is solved repeatedly until the self-

consistency is below" some predetermined value, normally one part

-6
in 10 for the charge density.



;thave only used tho long-ramne j"ar; or the extcrnul potential

as the localizing potential. So, for ionic substnnes, the

electrostatic potential will be screened while the short-range

effeots of the inner shells will chn~e the loc.al orbitols. Somie

anions will not localize in this situjition since it is the

Nadclunr. part of *the potential that stabilizei. them. Since A is

essentially arbitrary, Y'a are free to nlter it in whntever way

that achieves optin-al localization, and we often use--

in equstion 3.21 instead of 7- Y



C HA F TE. I

Energy End Theory

The Hartree-Fock energy hands are obtainea by plctting

the one-electron energies derived in equation 1.16 n.ainst the

crystal momentum k. Our coiculations make use of the symmetries

of the crystal. In the case of these calculations, it is the

zinc-blende -rystnl structure.

Bloch's theorem requires that the wcavefur.ctions of the

solid satisfy

v )

where r~ ~r~)~~ W

for any lattice translation vector R. The crystal momentum Is

again k and n is the band index. avefunctions that satisfy

this condition are 3loch wavefunctions.

If we loop at the set of R , we can see that there
n

is an element of R that hns a minimum length, corresponding to
n

the fundamental lattice sracing. Considering this, and the fact

that Ri is s group under translation, we can see thnt there is

n

a axinun k vinen we trnnsform into momentum sTrace.



Tivt',nr-, ther* i: x finitc rc.-c')n e'f ,i'n-qulvnl,. n -rj n ts -

the first Brillouin zone.This may be reduced to on ' irreducible

wedge' Ly syretry considertions.

The solution to the :.rtrce-Fock equations Is lengthy

for crystals, and the successive approximation nature of the

calculations requires that the equation be solved several times.

The Fartrae-Fock equation can be rewritten in terms of the

Fock-Dirsc density ratrix( )t

/ j s)f-cos t est ati sa behn

equatton 2.2 need onlxv be .Rolved once o obtain the elgenvalues

and ei~enfuctons. !idazms ( ) and Gilbert( ) have shown that

tlhe denisity r trix (x,x') is the same for equations 2.2 and 3.21

If0 ~~ (2.2I)A

So ;c have the required density matrix, and can obtain

crystal wevefncions from the nready obtained local orbltals

by coe.structwr..-i the sock operator and solving equation 3.2 3ust

once. The rat:-ix eier.nts of ire cenctyted to first order in



interatomic overlap , consistent :ith the calculation of' the

local orbitils,

The Bloch functions (r) are expanded in a basis set

in which the basis functions have the form

This linear combination of basis functions technique is similar

to the famous linear combination of atomic orbitals technique

(LCAO) except for the fact that the are not free-atom orbitals,

but are the local orbitals obtained previously. Note, the local

orbitals are occasionally enriched for the case of virtual states.

The LOPAS program will not indicate basis functions appropriate

for a virtual state if that virtual state is of a different

angular mornentum type than the occupied states; for instance,

a case in w:hich the occupied states are all s and p-like, while

the first virtual state is d-like. In this case, basis states"

for the virtuais are added, consisting of spherical harmonics

multiplied by single STO's that are chosen tc have small overlap.

Since the crystal momentum k is a good quantum number,

the Fock srace is diagonalized into separate speces for each

reciprocal 3attice vector. The Intekirals necessary to perform



the c.1 culation nro 1:-Iridert". -.t 1 cai:ee' only 1:* rrfor..-J

once. !ultIcenter integration !,s dorie by the Lo-ti o(-fNr.ction

e=-rnsion method ( ). One of the sites is choser. as center and

all functions are expanded in terms of spherical harmonics centered

on that site. The calculations are performed using the programs

.aD and KZO. w:ritten by Munz. The output consists of energies

and coefficients of the basis functions at 20 selected points

of the Brillouin zone.



Correlation Corrections

As previously mentioned, .artree-Fock theory does

not Give exact solutions to the true many-electron Hamiltonian.

Since we are using a singlc determinental wavefunction, electrons

are affected only by the mean field. Electrons of the same spin

have some of their true pair interactions taken into account,

but there Is no pair correlation at all btween tw:o electrons

of opposite spin. It is obvious that the Coulomb force between

tw o electrons is independent of spin, and should keep electrons

from the near neighborhood of any other electron.

We say that the motion of electrons of opposite

spins is uncorrelated, and that electrons with like spins are

incompletely correlated. The correlation energy is usually.

defined as the difference between the energy obtained from

our mean-field Hartree-Fock theory and the exact non-relativistic

energy of' the system. This exact energy could in principle be

determined by using a computational technique called configuration

interaction
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In this mcthod, a waverunction Is xised that is a liiir

combination of determinants. It's impractical for all but the

swallest iolecular and atomic systems, and is far too time-

consuming to be useful in solids.

For solids in general, and specifically in the case

of the II-VI compounds under discussion, we attempt to estimate

the correlation correction to the Hartree-Fock calculation. The

correlation correction for the one-electron eigonvalue is the

errorc from ?oopman.L' theorem a ) nd from the independent

Particle model.

According to Koopmnans' theorem, an orbital eigenvalue

is approximately the difference beyween the Hartree-Fock energy

of the N-electron system with the level occupied and the Hartree-

Fock energy of the N-i electron system with that same level

unoccupied. These Hartree-Fock excitation energies are

Ak V/CAP (41

for states that are occupied in the Hartree-Fock ground state

r(,e-) IAl)

an d F (4.2)
f- f h F

for virtual states of the Hartrce-Fock &round state.



When we attempt to Itivrove the Hartree-*ocl*

approximation, we wish to keep the Coneral band scheme, so

C = - (4.3)

where the elgenvalues are the exact eigenvalues of the system.

We assume that the correlation enerGies are a small perturbation

(L)
of the original Hartree-Fock bands, and we can then write E vi

(L) (L) (L)(4)

E E + E (4.5)
HF C(L)

here, E is the total correlation energy of a system with L
C

electrons. Equations 4.3 and .4 may now be written as

0 (1,1) 01-.t
e = e + (E -B ) (4.6)
nk nk e c

o (N) (N-i)
e = e + (E -E ) (4.7)
nk nk c c

A useful approximation, valid for nonmetals with

valence band width lrss than the Hartree-Fock optical band gap,

was developed by Pantelides et al ( ). They showed that equations

4.6 and 4.7 may be rep3aced by

o (N-I)
E = E + E (h) (4.8)
nk nk nk

0 (N)
E r= E E (e) (4.9)



In these. oquations, , EnW (e) is the srIf-energy o1f an c.cctron

that occupkes the one-electron Hartree-Fock st.te r;k* in an

(N-1)
N-electror. system. E (h) is the total energy change in the

nk

relnins r-i eluatronj when the electron occupying the state in

(N-1)
question is removed. E (h) is the self-energy of a hole.

nk

Pantelldes et al ( ) have produced some model-

independent results concerning these self-energies. They find

that the self-energy of holes is always positive, and therefore

the valence binds from the original iartree-Fock calculation

always move up on the energy scale upon correlation. These self-

eneriez grow as we approach the bottom of the valence bands, so

on balance the valcnce bands are narrowed. The anlf-energies of

the lower electrons in the conduction band are negative, so the

conduction bands move down. The models used have only small

change in the amount of shift for the low-lying conduction band,

and so we use a rigid downward shift for these. We end up

shifting the valence bands higher and rigidly dropping the

conduction bands. This produces a smaller optical gap than that

obtained by the Hlartrec-Fock caClculations.



We more nearly apprcach tho ex.perir.ental gap by this narrowing.

These selC-energies were first calculated by

Toyozawa ( ). The theory of this calculation, the electronic-

polaron method, was considerably further developed by A. B. Kunz,

so that it now predicts hole self-energies as well.

In the origival Hartree-Fock theory particles respond

only to the average position of the other electrons and ions.

This is obviously incorrect, or at least incomplete; the

independent charge will polarize its surroundings, especially if

those surroundings 1vmve sufficient time to respond. The electronic-

polaron model dresses the conduction band electrons and valence

band holes with quanta of the polarization field. These quanta are

excitons. In the model we are using, the excited states of the

(N)
crystal are simulated by a dispersionless band of excitons. E (e)

(N-1) 
U

and E (h) are the interaction energies of a bare electron ind
nk

hole with this field. Thesc energies are called polarization

energies, This model uses second-order pert arbation theory to

calculate the self-energies.



These polarization energies ore calculated on the

basis of a model in which the hole or electron is fixed in space.

This method, the Mott-Littleton method, uses a perturbative

approach to find the induced dipole moments on all ions of the

crystal due to the localized charges. This calculation takes into

account the field from the induced dipoles - it is self-consistent.

Since it takes a finite time for the crystal to respond to such a

change, moving charges should induce less polarization timn the

model static charge. Therefore, this calculation should give an

upper bound for the polarization energies of actual, mobile

electrons and holes.

This electronic-polaron model is basically a long

range scheme. Only in the limit of large distance can we find these

changes by assuming that they can be described by dipoles.

For short distances, the shape of the Vavefunctions plays a major

role, and quadrupole and higher multilpole efrects cannot be

ignored. The changes in the central atom and its zear neighbors

certainly cannot be modeled by a dipole very successfully!



Short-range correlation calculates the change of the

nearby orbitals when an elotron is added or removed. To find these

corrections, we do simple atomic calculations of different

Ionization states, supplemented by cluster calcalations in the case

of negative Ions where the added electron extends over a significant

region of space. In the limit of zero overlap between atoms, the

short range correlation correction to the hole energy is

sr
E (h) - -E (4.10)

scf

where ( is the energy of the level the electron was removed from

and E is the Hartree-Fock ionization energy. The ionization
scf

energy is the difference between the Hartree-Fock energy of the

system stith the level occupied and the iartree-Fock energy with

that same level full. The short-range energies so calculated

are again upper bounds, since electrons and holes are not as

localized as this model potrays them.

The lHartree-Fock calculation and the following

correlation correctinns give a set of one-electron energy bands.

They must now be compared to experiment to test the adequacy of

our approximation.



3J*

CADMIUM SULFIDE

At room temperatur,. and standard pressure CdS

crystillizos in the zinc-blonde lattice with a lattice constaaL

of 5.818 angstroms (10.99 atomic units) and in the hexagonal

form with lattice constants of 4.1348 and 6.7234 angstroms (

7.8136 and 12.7054 atomic units). The zinc-blonde form, the

subject of these calculations, is composed of two interpenetrating

++ -

face-centered cubic sublattices occulied by Cd and S ions,

displced relative to each other by 1/4 of the diagonal of the

unit cube. The symmetry properties of the zinc-blende lattice

2
( s.-ace group T ) have been discusscZA by -Parmonter ( ), and in

d

the following discussions of the band structure, and notation of

Eouc : ert, Smoluchow:sh:I and Wigner ( ) will be used.



We first examine the energy ststes at the Prillouin

10
zone center, the point. Cadmium ions contribute a filled (4d)

shell to the valence energy region, and sulfur ions contribute

2 6

a (3s) (3P) configuration. The p and d levels hybridize to

some extent, since they are separated by less than nine evi still,

the valence bands are not strongly hybridized. The top valence

band is predominantly p-like ( ever 75%) and the next lower band

is predominantly d-type, agin over 75%. We expect the lowest

conduction band to be derived from the cadmium 5s levels, as is

usunl in compounds that'have any ionic chnracter. In the zinc-

blende structure, the crystal field splits the fivefold degenerate

d levels into a triply degenerate state and a doubly degenerate
15

state. The threefold degenerate p states stay degenerate under
12

this crystal field and transform like . The zinc-blende lattice
15

has no inversion symmetry, so the bands at the gamma point need

not have a definite parity. Th-- conduction band contains
15

both p and d contributions, in fact.

Several previous calculations have been done. The vaience

bands, esnecially the upper ones, ftnd the lower conduction bands



hnve been well-described by varioua pseudopotential clculationc.

Th~it is, they accord with current exreriment. However, since

the pseudopotential method is basically a prametrization scheme,

in which the parameters are determined by experiment, little

critical new information c.n be obtained. If the experimental

evidence has been misunderstood or misinterpreted, the

pseudopotentiol will simply predict the mistakes or misunder-

standings that it sprang from. A pseudopotential calculation

is an aid to undeistanding, but it tends to not be falsifiable.

Such calculations, such as those by Cohen and Bergstresser ( )

also depend on the validity of the cancellation theorem, which

is not exact and which is much less vauiable for systems that

have localized states that are closely comparable in energy with

the valence states - here, the cadmium d states are the ones

not easily described because of their local nature.

A related but more theoretically rigorous technique,

the orthogonalized plane wave method, has some of the same errors.

In this method, the valence and conduction states nre described

by plane waves orthogonalized to the core states, taken as constant.



In these previous O.' calculations, es performed by &,uwama and

Stukel ( ), Euweara and Collins et al ( ) and by Stukel et al ( )

there have been errors of up to three ev in the p-like valence

and conduction 1bands in compounds made of first-row atoms.

Also, the 4d states are misplaced by about a rydberg - probably

related to their core-like nature. The level ordering of the

cadmium 4d and the sulfur s bands seems to be reversed from

that measured by photoemission by about 6 ev. Altogether it

is easy to nee that there is a need for a first-principles

calculatio;a that co-rectly predicts the major features of

the band structures of these materials.

Therefore, the first all-electron, self-consistent

nonempirical band calculation using rionlocal exchange has been

performed on CdS. The emthods of calculation are as discussed

earlier in this work. It should be menti-ned that a self-coniistent

band calculation has been performed by Zunger and Freeman ( )

using a local density approximation for the exchange potential.

Their results, as well as earlier ones, will be discussed in the

ensuing pages.



-V

T'A ,4, V. .

STO ASI3 FUNCTIC'S FOR CADSIUYE AI:D LCCIL CA IiL COEPP1CISh S

a ?axis p B.asis d Basl

3Z n zn z
03 03 13 13 23 2j

1 1 70.66 3 31.29 3 20.99
2 1 4c. 69 2 19.62 3 11.48

3238.00 3 10.48 3 7.67
42 20.71 3 6.83 4 5.75

3 .18.45 4 .00 4 2.50
10.05 4 4.55 5 2.00

5.31 5 2.90
8 5 2.90 5 2.00
9 5 1.90

10 20 30 4o 50 21
j c J c J c j cj c c

1 oo4336 -.o447 0.03145 0.03871 o.oc37 -.17167
2 0.93176 0.37037 -.00309 -.01190 -.00465 -. 86027

.035?6 0.17749 0.41231 0.19171 003-'36 0.10571
0.01958 -1,17646 -1.211.(6 -.54694 -IC,767 -.23043
-. 00903 -.O2794 0.72937 0035.2 0.07401 0.724

6 0.00142 -.00827 0.93450 0.53579 0.0--.14 -.020-15
7 0o065 0.00355 -.16742 -1.21004 -.22539 0.00925
8 0.00033 -.00172 0.00351 -03467 0.04950 -.00394

-00018 0.00093 -.04519 -.00954 0.95921

31 4I 51 32 423 C C C C C

-. 05253 0.C 812 0.00473 0.0"700 -. 03149
2 :.4679 0.1U90 C.0i.2 38 0.66o6 -. I.d53
3 1.2±1 4 -. 5232 o.05F04 0.30001 -. 23294
4 -30972 -. 16943 -. 37952 O.U.590 0. 6424 C
5 0.30198 0,795 0,41531 -. 0C499 0.7 .32

-.05148 0. 7 04 -. 12743 0.0C302 -. 15 56
7 0,01794 0.0$963 0..33543

-. 00775 -. 1566 -. 724'0



TALL bu~

STO BASIS FUHNCTIcO.S FOR StL:.' AND LOCAL Cr.3ITL COEPICIE ,.

8 Deal8 p Basts

.1n z n Z

1 17.60 2 18.00
2 214j 2 13.42

3 2 10.002 5.36 2 .75
3 2.59 2 4'.80

1 .63 3 2.321) 3132

10 2C .300 40 24. 31a C 0  C2 C0 CO C2 . 0

1 0.84228 -. 23268 0.06270 0.02395 0.000-7 -. 043922 0.18755 -.11S09 0.03977 0.024 1 0.029.-5 0.214.o
3 -00028 O.i3'60 -. C2-45 .10591 0.001) -7?4

4 0.00235 0.93738 31 -. 30626 0.33.220 0.57490bo-.00054 0.00602 0.1001 0.71221, 0.66921 -. 06509
6 o.ooo26 -. 00035 0.59220 -. 62170 0.00595 -. 19300
7 -. 00074 -. 84,226

41 32
C C

1 0.04380 0.00
2 -. 22859 0.00

0.54462 0.00
-. 50114 o.oo

5 0.27387 1.00
-. 45037

7 0.34676



toinri ,billties listed ly 'Tess:"-nn 0,t ' ( ) were tho'n used for

++ -

Cd and S Along with the ontical dielectric constant of 6.32

to calculate the polarization energies us!nP, the PMott-Littleton

method. We obtiined values of 0.1366 ry and 0.25B4 ry were

obae-kned ns the polarization energies associated with the S

++
and Cd holes respectively. eing less tightly bound, the

sulfur anions polarize to -s greater extent around a hole at the

Cd cation site than do oadmium Ions around a sulfur hole,

prodicing a larger polarization energy for the cation. We also

calculated short-range relaxation energies for the states of

sr --
interest in the valence region: these are E (S ) 0.07824 ry,

3P
sr -- sr ++

E (S ) 0.06302.ry, and E (Cd ) 0,116 ry. These corrections
3,' 4s

were added to the Hamiltonian matrix which was then rediagonalized

to give the correlated valance bands. Conduction bands were

computed by shifting the lartree-Fock conduction bands by -.2584 ry.

the poinrization energy of a conduction band electron on a

++

Cd site.

Shown in figure 4.1 are the correlated energy bands

of CdS. The calculated 'band stcture shows cadmium sulfide to be



Figure 4.1 Correlated energy baunds of CdS for the normal

lattice constant of 5.181 angstroms 10.994 au).
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a direct hind eap semiconductor with the Fo at the gnmA toint.

This conclusion is In agreement with the pretvous bAiid calculntions.

Three major non-overlappine regions constitute the valence bonds

in this system. The S 3s derived bond lies 19 eV below the

velence bond edge end is about 1.4 eV wide. The next region

++

is primarily derived from the Cd 4d, and lies 1.2 eV below the

top of the valence bond. This band is about one eV wide. The

uppermost valence band is primarily derived from S 3p levels,

and is about 3.9 eV wide. The lowest conduction band is s-like

+ + .... n

and is derived from the Cd 5s, S 3s and S 4s levels.

The band gap is found to be direct and equal to 7.1 eV.

The optical value of the gap , E = 2. 5 V ( ), cbtained from
9

experiment, is in serious disagreement. Th- correlation model

here used,.the clectronic-polaron model and it limit,

1lott-Littleton theory, is adapted to insulators end ignores

short-range polarization effects. Such effects should be small

in atoms and in systems where the local orbitals are only slightly

pertrbed from the free atom or ion, but in polar semiconductors

such ,.s Cd," , there is no gunrAntse that the local orbitals are



Figure 4.2 Density ot'states of CdS
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Fi.ure 4.3 XPS spectrum for CdS according to Ley et Al ( ).

I and I describu fine structure ot the highest valence-band1 2

peek. S is a shoulder an the high-binding side of this peak.
I

II rcprcs, nts the cecond valenco-band peak.
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tat simior to the free Ions, In this class of coz.rounds, there

is substsntiil charge density in the Internucleor region.

it r as been argued that svch effects oct to norrow the band sap.

The density of states for CAS as calculated from the

original band structure calculation is given in figure 4.2. For

com arlson, figure 4.3 shows the corrected XPS spectrum obtained

by Ley et al ( ). The experimental cvidence clearly shows the

two penks in the density of states of the upper valence band.

The positions of these peaks are also in reasonable agreement

with experiment. The upper peak lies 1.6 eV below the top of

the valence band by Lay's measuarements, while ou calculation

gives a peak' .t approximately 1.4 eV. Experimentally, the second

pea. is at 4.1 eV, while this calculation has a peak at 5.4 eV.

It also seems possible to identify the shoulder of the upper peak.

From our band calculation, this shoulder seems to be at about

2.0 eV, while Ley"s measurements put-it at 2.1 eV.

The position of the d-like levels is also correctly

prelicted in these calculations. These levels, primarily formed

from cadmium 4d states, are found to peak at 9.64 cV below

the top of the valence band experimentrllly, according to Ley.



Figure 14,Y Joint densaity of states of UdS
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Figure 4.5 Imaginary part of the dielectric constant of CdS

(this calculaition)
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Figure 4.6 Experimentally derived imasginary part of dielctric

constant in CdS, from Cardona et al. ( ).

Derived from ultraviolet reflection measurements.
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Cur calcul'tion gives a value of i0.0 eV below the top of the

valence bond, In very good agreement with experirment. This is

in sharp contrast with previous pseudopotential and OPW

calculations, which misplaced this band as much as 12 eV below

its actual position. It should be mentioned that Ley's

photoemission studies were done on CdS in the hexagonal form,

but since the first two shells around the central atom are

identical in the hexagonal and zinc-blende structure, the atom

is exposed to a very similar potential, and no substantial change

in the density of states is expected.

In figure 4.4 the Joint density of states as calculoted

fron our band structure is shown. In figure 4.5, the imaginary

part of the dielectric function is calculated from the some

theoretical band structure. In figure 4.6, Cardona et al extract

the imaginary part of the dielectric constant from ultraviolet

reflection measurements on zinc-blende CdS ( ). There is clear

qualitative agreement, especially wiIth the central peak and the

two sub-neaks approximately 3 and 5 eV above that central peak.

The tail below the central peak in energy is exaggerated due to

the overestimate of the band gap in our cnlculations.



To sum up: these colculations correctly predict the

cajor feotures of the energy bands in CdS, as dctermirned from

optical and other measurements. Insofar, this first all-electron,

self-consistent non-empirical method has succeeded. The d-llke

levels are correctly predicted, as was not the caCe with earlier

calculations. Nothing in the puire bulk energy bands suggests

an explanation of the anomalous diamagnetism, and it would seem

that the effect is not an intrinsic one. It may be hoped that

this better understanding of the electronic structure of the

pure solid will aid in the understanding of the anomalous

dism.nrnetic state, perhaps by acting as necessary first step in

the examination of the properties of defects and Impurities in

cad.nium sulfide.



ZINC OXIDE

At roomn temperature and standard pressure ZnO

crystallizes in the hexagonal (wurtzite) form with lattice constants

of 3.249 angstroms (6.480 atomic units) and 5.193 angstroms (9.324

atomic units). The zinc-blende form with identical nearest-rielghbor

distance has a lattice constant of 4.595 angstroms (8.684 atomic

units) and is the subject of these calculations. It Is composed of

two interpenetrating face-centered cubic sublattices occupied by

+4' --

Zn and 0 ions, displaced relative to each other by 1/4 of the

diagonal of the unit cube.

We begin again by examining the energy states at the

10

Brillouin zone center. Zinc ions contribute a filled (3d)

shell to the valence energy region, and oxygen ions contribute a

2 6
(2s) (2p) configuration. In this crystal structure, the threefold

degenerate p states stay degenerate and transform like'
15



The crystal. field splits the fCvefold d.-'Gnoratc dlevels into El

triply degenerste ' state and a doubly degernrnte I .stute.
15 12

The zinc 3d levels and the oxygen 2 p levels lie quite close,

and this calcu!ticr. shows shows all eight vslcnce bands l, ing

within a five cV region. The zinc-blendc lattice has no inversion

symmetry, so the bands Pt the gamma point need not have any

definite rarity. This calculation shows that this upper valence

re.ion exhibits strong p-d hybridization. The band lying

beneath this upper valence region lies nearly 24 cV below the

top of the valence band, and is primarily derived from oxygen

2s states..

In general, in ionic compounds such as ZnO we would expect

the lowest conduction band to be primarily formed from the

zinc 4s level. The actual calculation shows that although the

zinc 4s states play a major role, oxygen 2s and 3s states actially

play a larger rolc in this first conduction band. The next.

conduction.-band;. triply degenerote at the ione center, are formed

almost entirely from zinc 4p states . This is suggested merely

by co,.-orin- zinc with its successor in the periodic table, gallium.



Several previous calculations lave been performed on

zinc oxide. Attempts using local pseudopotential theory, such as

those by Rossler ( ) and Bloom and Ortenburger ( ) have not

been entirely successful. Since the pseudoDotential theory depends

upon a cancellation of the strong core part of the potential by

the usual requirement that the valence electrons be orthoironal

to the core electrons, first-row elements would seem to be

unsuitable for this approach. The point is that valence p-states

for first row elements are not required to be orthogonal to any

p-core states. Investigators have attempted to alleviate this

problem by empirical adjustments to the pseudopotentols, but

It hesn't worked well. When nonlocal pseudopot.nntials were used,

as in the calculations of rhelikowsky ( ), a better agreement

with experiment-is achieved.-Even so, much of the value of the

pseudopotential approach is lost. There is not the same confidence

that the pseudopotential will retain its preditctive powers in

different compounds, because the physical rationalc is weakened.

The modified nnd ronlocal csculations still suffer from all the

original weakness of pseudopotentials: reliance on experiment.



STO FASIS FUNCTIONS FOR Z):C 'p:'uJ LOCAL OBITAL COEFFICIENT3

s Basi.s p Basis d P.asis

n Z n Z n
oj oj 1) 1j 21 2j

11 31 .07 2 27-00 3 13.10
2 2 26.50 P 16.42 3 7.01
3 3 21.00 2 11.3 3 3.7:
4 2 12.01 3 6.34 3 1.98
5 4 13.30 3 3.33
6 3 6.24 2.67
7 3 4,'14
8 4 2.30
9 4 3.30
10 2 9.00

10 20 30 40 50 21jC C C C C C

1 -. 9326! -. 28821 -. 10070 -. 00331 0.00195 OO1 64
2 -. 08561 -. t 13 -. 09538 -.01824 -.01406 0.26792
3 0.01250 0.01537 -.04619 -.04973 -. 04 93 0.73076

-.01042 1 .13 346 0.6230 0.1 3445 0.10761 0.01326
5 0.00298 -. 01369 0.01456 -.03220 -.03393 -.00228
6 -.00191 -.01219 -. 6994 4 -.67430 -.67032 0.00105
7 0.00085 0.00370 -. 4-2733 0.43207 0.v5002
a 0,00003 0.000L3 -.0O47L 0.29649 0.15094

-.00031 -.00074 0.01593 -.33905 -.36103
10 0.00120 I,.02ZS4 0 -.05712 0.36535 C.38957

11 41 32 423C C C C

1 -.00891 0.00896 0,037(:l  -.03608
2 -.05590 -.06742 0 36525 0.006763 -.30 ,i0 0.00324 O: 65 -. *1..
4 0.73105 .00187 0.24953 0.81007
5 0.49766 o.49813
6 -.08803 -.86439



TABLE ,2

STC -AS13 PUCTIONS FOR OXYGEN AND LOCAL ORBITAL COEFFICIENT3

5 ISa3s p Basis

n Z n Z
o0 0 1 1j

1 1 .61 21.
2 1 13.27 2 1.74
3 2 1.76 2 3.42
I 2 2.56 2 7.89
5 2 4.36
6 2 5.94

10 20 30 21 31
C C C C C

1 0.93793 -.17882 -.06946 1.45654 -.68094
2 0.03918 -.02059 0.02320 -.77955 0.72968
3 -.00027 0.69805 -.49495 0,45277 -. 06!06
4 0.00356 0.14249 0.71512 -.00728 0.01303
, -.00830 0.49634 -.43478

6 0.04136 -.32320 0.22209



Therefore, we perform an pll-electron, 3l- onstcnt

none.mirical bnnd eniculation on ZnO. The methods of calbulation

are the same as used previously on CdS.

The calculation wis begun by celculetln% local orbitals

for zinc oxide with the normal lattice r.onstrknt. The zinc and

oxygen basis sets or Paus et al ( ) were used and were modified

for this calculntion. Two additional diffuse STOs were added to the

s basis on zinc. The results of the local orbitals calculation

are listed in tables 5.1 and 5.2 for zinc and oxygen Ions,

restectively.

Hartree-Fock bands were calculated for 20 k points

in the irreducible wedge of the Brillouln zone. The usual

exaSerated band gap appears; we proceed to apply the correlation

methods previously discussed.

Polarizabilities listed by Tessman et al ( ) were. then

+J. --

used for Zn and 0 along with the optical dielectric constant

of 4.036 to calculate the polarization energies using the Xott-

Littleton method. We obtained values of 0.2172 ry and 0.2361P ry

-- ++
as the polarizatlion energies pssocieted with the 0 and Zn

holes rospectively. We also colculated short-rnnge relaxation



L.

Figure 5.1 Correlated energy bands of ZnO for the normal

lattice constant of IJ.595 azigstroms C8.634~ au).
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energies ror the ctate of interest in the valence rc;ion: this

Sr ++
As E (Zn ) = '0,3110'2 ry. These corrections were added to the

3d

Hamiltonion matrix which was then rediagonallzed to give %',e

correlated valence bands, Conduction hnds were computed by shifting

the Hartree'Fock conduction bands by -.2864 ry, the polarization

++

energy of a conduction band electron on a Zn site.

Shown in figure 5.1 are the correlated energy bends

of ZnO. The calculated band structure shows zinc oxide to be

a direct band. gap semiconductor with the gap at the gamma point.

This conclusion is in agreement with previous band calculations.

Two m~jor non-overlapping regions constitute the valence bands in

this system. The highest region is about 4 eV in width, and is

divided into two subregion with almost no. overlap. The higher

end wider of these subregions is , approximately 3 eV in width,

- - ++

is comnosed of 0 2p and Zn 3d levels, while the lower subband

+

is almost dispersionless and is of almost pure Zn 3d character.

The lowest valence band is about 2.3 eV in width and is composed

- - ++

of 0 2p and Zn 3d levels.

The band gap is found to be direct and equal to 1.0.86 eV.

Sinc the rp is expcrlmncntally found to be 3.3 eV, it must be



Fy

Figure 5.2 Density or states of ZnO
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Fisure 5.3 Correcte3d XFS spectrurn for ZnO secording to Ley et al( )
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0/

thAt the conduction band structure here predictcd .s ser'oualy

in error. Previously mentioned potential problems in our corrc.o]hion

model nay explckin this discrepancy, but it seems most li.ely thnt

there is some flaii in the estimate of the polari.zation energlcw.

The density of states for ZnO is calculated from our

band structure Is given in figure 5.2. For comparison, figure 5.3

shows the corrected experimental density of states, deriled

from x-ray photoemission experiments conducted by Ley et al ( ),

The d-like levels have been siibtracted out from the experimental

data, since they dominate the spectra. The double peak in the

density of states of the uppermost band is clearly shown in

experiment and in our calculation. The d-like levels in our

calculation have some structure, are not smoothed into a single

.peak as in the experiment. The experimental peak is centered

8.81 eV below the top of the valence band, according to Ley.

Our d-complex is situated approximately 5 eV below the top,

but the quelitstive picture, that of a double-peaked valence

band with a very shn.rp d-band about 3 eV below, corresponds

closely with experiment.



Our calculations olso Live it, ond derived from 0 2s

states (not shown on figure 5.2) centered aroun "4 V below

th top of the valence band - this corresponds to t le we;;:

peak in figure 5.3

In addition, we have celculated the join t dtnsl6y of

states ( figure 5.4) and the imaginary part of the dieleci,,,c

constant ( figure 5.5) for zinc oxide.
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Figure 5.." Joint Density oI' states of ZnO
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Figure 5. 5.Imaginary part of the dielectric constant of Zno
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CONCLUSIONS

We've used ab initio Hartree-Fock theory, as well as

relaxation and polarization correlation corrections to that theory,

to calculate the electronic hand structures of cadmium sulfide and

zinc oxide. In the calculation of cadmium sulfide, hybridization

of the Cd 5s, S 3s and S Ls is a major factor in the lowest

conduction band. The calculation shows that CdS is a direct gap

semiconductor with a gap of 7.1 eV at the gamma point. This tends

to show that the mechanism proposed by Abrikosov to explain the

anomalous diamagnetism originally seen in CuCI ( and discredited

there by Weidman ( ) ) is not applicable to CdS, since it requires

a small indirect gap.

The calculated one-electron energy bands are compared

with the published optical data. The valence bands are in excellent

agreement with photoemission and reflection data, and, in particular



the position of the d-like band is correctly predicted, in contrast

with previous calculations.

The calculation for zinc oxide shows that there is

very significant mixing in the upper valence bands between the

i.. ++
0 2p and Zn 3d levels. It seems clear that previous pseudootential

calculations that could not correctly take into account the zinc

d levels were incarable of explang the valence bands. The calculation

gives a band gap of 10.86 ev, and predicts ZnO to be a direct gap

semiconductor with the gap at the gamma point. In the case of both

CdS and ZnO, it should be recalled that we are essentially just solving

Dyson's equation, and that higher order diagrams are quite capable

of accounting for the difference between the (exaggerated) gaps

from our calculations and the measured experimental gaps. The fact

remains that these calculations predict the valence structure;

the one electron bands for zinc oxide also accord well with published

optical experiments. Again, the position of the d-like bands is

correctly predicted.

The anomalous diamagnetism observed in CdS remains

unexplained. It seems to be an extrinsic phenomenon .
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The observation of ferromagnetism upon an aDplied

field, as well as the anomalous diamagnetism, is intriguing.

It su;gests that the rairing mechnaism may favor a state with a

spin of one, as opposed to the Cooper pair, with a net spin of zero.

Each zair would have an intrinsic magnetic moment. This possibility

has been discussed for classical phonon-mediated superconductivity

by F. W. Anderson and P. Morel( ) but seems not to have been

observed, except possibly at extremely low temperatures ( ).

An exciton-mediated pairing might well favor the 1=1

or higher state. The superfluld state in He is suggestive.
3

As yet the details of the interactions are not know,

although it does seem that chemical impurities play a role. It may

still be possible to test some of these ideas by a phenomenolo!1cal

theory like the Ginzburg-Landau theory. One possibility seems

interestings in the Ginburg -Landau theory, two characteristic

lengths appear, the coherence length and the penetration length.

In such a model revised for a p-wave system, a third length arises,

the characteristic length for the change in spin direction.

The two lengths of Ginzburg-Landau theory allow the

existence of a distinctive surface, which may have a lower energy



than the bulk state, which leads to the interesting and

technologically useful type II superconductors. This still exists

with three characteritic lngths, but another effect, becomes possible.

A second surface layer is Introduced; we may compare this to the

earth, with crust, mantle and core. If the mantle is energetically

favored, bubbles of a certain size would be energetically favored.

These superconducting domains might explain the very high but finite

conductivity seen in the anomalous states of CuC1 and CdS, and

alignment of these domains might explain the feiromagnetism seen

in CdS under high applied field. At the moment, this is all speculation.

We await further experiments.
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ABSTACT

Energy bands and ion zation energies for electrons in AlP, GOaP, and

GaAs are obtained usinS a new rethod proposed by Kunz, et al.1 The valence

bands and ionization energies obtained are found to be in good agreement

with experiment. The conduction bands vary substantially from experiment.

Finally, a method for obtaining better conduction bands is proposed.



1. INTRODUCTIONJ

A new ab initio rethod for obtaining correlated energy bands was

recently proposed by Kunz, et a1. 1 The need for a net: method becomes

apparent when the inherent problems associated with current ab in_iti.o

methods are considered. Existing methods can be broken into tWo classes,

those which use the nonlocal Hartree-Fock (H-F) exchange potential and

those which usc some local density approximation to the exchange or

exchanGe-correlation potential. The former class or methods require3

calculations which are both lengthy and complicated. Once such a H-F

calculation has been performed, there is still a need to obtain correlation

corrections. These corrections are poorly understood for covalrnt

semiconductors like the III-V compounds. On the other hand, local density

approximation calculations give results which are highly dependent cn the

choice of the exchange-correlation potential. No single potential has been

found to give good results for all classes of compounds. For example,

erman, et al.2 , found that in using both the Slater3  and the Kohn- Shan

exchange potentials for several semiconductors, the Slater potential aGreed

more closely with experiment for NI-VI semiconductors, while Kohn-Sham

exchange gave better results for the IlI-V compounds. Even in cases where

a given potential yields the correct valence and conduction band

structures, such calculations have not always been able to place the core

levels in their correct locations relative to the valence bands. Finally,

local density calculations have not been successful in obtaining the

ionization energies for electrons in most compounds. We believe that many

of these difficulties are a result of using a Hartree potential which

includes a self-repulsion tern, on the assumption that the potential from

one electron in an infinite crystal will be negligible. As has been shown
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by Kunz, et al. 1 this assumption is not correct in many cases and is a

source of significant error for Insulators.

The new method, which will be referred to as the fiartrec-plus method,

uses the correct Hartree potential, i.e. with the self-rcpulsion re.oved,

along with a local exchange-correlation potential. The ilnrtrce-plus method

was applied by Kunz, et al.1 , to the solid rare gases and NaCl yielding

bands which are in Rood agreement with both experiment and previous 1|-F

plus correlation calculations. The III-V semiconductors provide a good

test of the range of applicability for the Hartrec-plus method since they

are wide band semiconductors, ns opposed to the rare rases and ,aCl which

are narrow band insulators.

Ii, Sec.2, I1-F theory is developed and correlation is discussed. The

fiartree-plus theory and details of the calculations are presented in Sec.3

and Sec.1 respectively. in Sec.5, the results of Hartree-plus band

calculations for AlP, GaP, and GaAs are presented and compared to

experiment and previous theoretical calculations.

2. BASIC THEORY

The system of interest contains n electrons and N nuclei. Using the

Born-Oppenhcimer approximation5 , and neglecting relativistic effects, the

Hamiltonian is:

.(I)

where:

9;/=

The energy is in Rydbergs, e2=2, uppercase letters refer to nuclei,

lowercase letters denote electrons, and the prime on the sum indicates that

the self-repulsion term, i=j, is excluded. The problen now: is to solve the
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Schrodinger equation:

where '?."1is the exact n-electron wavefunction for the ith excited 3tate,

and the Ti are taken to include both 3pace and spin coordinates.

TO 3iMplify this problem, we approximate the exact wavefurnction

With a single Slater determinant formed from a set of one-electron

orbitals, (Pi(x~j)), i=19'0',n and J=1,**,n:

(Z--- ,)- (4 1 ) -'6~iI dd -r 7 )fl
The expectation value or H"), for the trial function will be a

rigorous upper bound to the exact ground state energy it' the resulting

energy E., is stable against variation in the 01 Performing such a

variation, subject to the constraint that the Oi be orthonornmal, yields an

equation for the Pi:

where F is the Fock operator:

Xn eq.(3), P(2,1) is an exchange operator, the bOs'f may be used as

operators, and pC~,)is the Fock-Dirac density matrix. The second term

is known as the direct or Hartree term, and the last term is the exchange

term. Nlote that the prim-e is no longer necessary since the Hartree

self-energy is pxactly cancelled by the self-exchange. Diagonaliziig the

inatrixAj gives the standard Hartree-Fock equation:

6;0~U) (W
The eigenvalues of eq.(lI) are given meaning by Koopmans' theorem6.

Labelling occupied states with i~l,o,n and virtual states with a~n..,*,
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the eienvalues are:

where EPis the energy of the single Slater determinant approximation to

the total m-electron wavefunction obtained by adding or removing the odth

orbital to the n orbitals used to form the 11-F ground state. Thus, -; and

6.' are the energies that an electron would have if its instantaneous

location were independent of the instantaneous locations of the other

electrons, and if no relaxation were allowed. To improve on the H-F

eigenvalucs while retaining the independent orbitals, one defines

correlated energies by replacing the approximate energies in eq.(5) with

the exact energies:

The energies 6; and 6o are quitziparticle excitation energies. The

quasiparticles associated with these energies are referred to as holes and

conduction electrons respectively.

There are two basic approaches to finding the quasiparticle energies.

The better understood of the two is the H-F plu4 correlation method, which

is essentially a perturbative approach. In this method, eq.(4) is solved

first, and then the correlation effects are added in as a small number of

corrections. This approach to obtainIng correlated bands was reviewed and

developed in a formal way by Pantelides, et al. 7 The correlation

corrections are fairly well understood for both metals and narrow-band

wide-gap materials. Unfortunately the III-V compounds do not fall into

either of these classes. The other approach is to use an equation,

analogous to the H-F equation, which somehow incorporates correlation into
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the potential. This is the apprcach taken by the Iartree-plus method.

3. THE HARIhEE-PLUS ILT"hOD

In the past, band calculations using local exchange-correlation

potentials have solved an equation of the form:

where:

fI * fd7' V 7 1; Pg'XI) -t /c 1 )

is a single particle operator which replaces the nonlocal exchange in the

Fock operator with a function, Vxe , of the local density,i/(F). Unlike

the Fock operator, eq.(7) no longer has an exact cancellation of the

self-repulsion by a self-exchange. It has generally been assumed that the

self-repulsion is negligible since it comes from one electron in an

infinite crystal. Ihis is in fact true for an electron in a totally

delocalized Bloch state. However, what is actually desired is the energy

required to add one quasiparticle to the ground state system. For all

insulators, and many semiconductors, these quasiparticle orbitals are

local. In this case it is reasonable to work in the local Heitler-London

representation. For such local orbitals, the self-energy is not in fact

small and should be removed explicitly.

In the local representation, let ( be the ith local orbital at

site m. The corrected potential then is:

H~ ; t-V'i) + V~ r~~P)

where:

is the nonlocal Hlartree potential. Althouga the Hartree potential is

nonlocal, the nonlocality is easy to deal with by using a single Hlartree

potential for all orbitals of the form:

-='YC11~ ?



:here:

Here the bra-ket notation is used to emphasize the operator nature of the

self-repulsion term.

For Vxc we have used the iocal exchange potential of Kohn-Sha-.4 and

the dielectric screening function of Robinson, Bassani, Knox, and

Schrieffer(RBKS)8 . Thus:

.' [P(7)"J = V; IF) Fr"' (J0

where:

and:
c< =. ,pCO rFJ 7'

Although it m!ght seem inconsistent not to remove the self-exchange in

cq.(11), one can argue that the self-exchange will only be a significant

fraction of the total exchange potential in regions of low density .,here

F() approaches zero.

4. THE CALCULATTO1S

To calculate the Hartree-plus bands shown in Figs. 1-3, we first

performed an LCAO calculation using H-F atomic wavefunctions obtained by

Bagus, Gilbert, and Roothaan 9. In this calculation fNesbet's symmetry and

equivalence restrictions10  were applied. Also, the crystal potential was

approximated by the first term of its expansion in Yl i.e. 10. The

next tern in the potential would be 1=3 and should not have a large effect

on the s, p, and d orbitals, which are all that are of interest here. The

potential and matrix elements are evaluated using 10 shells about the

central site. lie represent the remainder of the crystal by a residual



.delung potential. To obtain this potential, we used effective chares

given by Phillips 11. This LCAO calculation can not be expected to give

good results for the conduction levels due to the use or Nesbet's

restrictions I0 . The self-energies of the atomic orbitals have been removed

for both the occupied and the unoccupied parts or the orbitals. This means

that the conduction enersiCs have been obtained as though the conduction

electrons felt the potential from n-1 electrons, instead of all n valence

electrons. To remedy this the zelf-energies are explicitly reinserted for

the virtual states. At this point the Hartree-plus matrix is no longer

diagonal. However the coupling between the occupied and virtual states is

very weak and a second diaSonalization produces new valence bands which,

for GaP, differ in energy rron the previous bands by at most 4%. Taking

all this into consideration, we believe that the final Hartree-plus

operator so obtained is consistent with the configuration used. Finally we

form a Hartree-plus ratri, using atcnic orbitals for the core states and 89

planewaves for the conduction and valence states, and diagonalize it to

obtain the final band structure. For AlP, we repeated this calculaticn

usinG 27, 51, and 65 planewaves.

5. RESULTS

in all the band calculations performed here, energy levels were

obtained at 21 nonequivalent points in the Brillouin zone for an f.c.c.

lattice. The bands are drawn along axes of high symmetry which connect the

points of high syrn-etry in the Brillouin -one. The symmetry labels used

are consistent with Parmenter12 . In all cases the origin has been chosen

to be the cation site. In addition, the orbitals and their energies are

superscripted to indicate whether they are valence (v) or conduction (c)

states.
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The valence band utructu:es for Al.obtained using 27, 51, 65, and 89

planewaves/ are summarized in Table 1. No experimental or theoretical

values were available for comparison. The bands obtained with 89

planowaves are shown in Fig.1. By comparing the results for several

numbers of planewaves, we can estimate the size of the errors due to

incomplete convergence. For the top two p-derived bands, our results

appear to be converged to within 0.1 eV. The third p-like band is

converged to within about 0.3 eV, and the separation of the s-band and the

p-bands is converged to within roughly 0.4 cV. On the otherhand, the basic

structure is stable, as is the width of the s-band. We assume that this

convergence information is also valid for our other calculations.

In Tables 2a and 2b, the valence band structures for GaP and GaAs

shown in Figs.2 and 3 are compared to experiments and previous theoretical

calculations. It is particularly interesting to compare the artrec-plus

results with the two first principles OPW calculations. For both GaP and

GaAs, the Hartree-plus method gives valence band widths which are in better

agreement with experiment than those obtained in the first principles OP*

calculations, and are comparable in quality to the empirically adjusted

calculations, especially when the lack of convergence is taken into

consideration. All of the other calculations give better results than this

work for the separation of the s-band from the p-bands. This error in the

Hartree-plus results, 1.0 to 2.0 eV, is probably due to incomplete

convergence and relaxation effects that have not been included. None of

the other calculations listed give the position of the d-bands relative to

the top of the valence bands. For the Hartree-plus results, we believe

that the errors in the d-bands, which are less than 15%, are a result of

relaxation effects, which would be expected to shift the d-bands up
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relative to the top of the valence bands.

In Table 2e, the ionization energies for the aation d-levels of GaP

and GaAs are compared to experimental values. This information is not

given by any of the previous band calculations mentioned. The differences

between theory and experiment are easily accounted for by relaxation and

surface polarization effects.

In Table 3, the lowest transition energies are compared to expericent.

Clearly the Hartree-plus conduction bands are In very poor agreement with

expericent. To test for errors in the treatment of the self-energies, we

performed a calculation for AlP with the self-energies set equal to zero.

This calculation yielded conduction bands which differ from those with

nonzero self-energy by no nore than 0.2 eV. We therefore conclude that the

errors in the conductica bands are due to the choice of the

exchangc-correlation potential, Vxc. It is not really surprising that our

choice of exchane-correlation potential gives good results for the valence

bands but not for the conduction bands. As Wa13 shown by Pantelides, et

a. 7 , for both insulators and wide gap seniconductors, correlation effects

in valence bands are a result of virtual scattering of holes, while

correlation of the conduction bands cones primarily from virtual scattering

of electrons. Since the rechanisns for correlation in valence and

conducLion bands are different, it is unreasonable to expect one

exchange-correlation potential to be valid for both cases. We suggest that

in future Hartree-plus calculations, it should be possible to obtain better

results by using two separate potentials for the valence and conduction

states.

6. CONCLUSION

Based upon the results given by Kunz, et al. I, for the rare gases and
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the results for IXI-V semiconductors reported here, we conclude that the

ltartree-plus cethod should rivn good results for the valence bands or both

insulators and semiconductors when used with the RBKS screened Kohr-Sham

exchange. This method not only gives good results for the valence band

widths, it also gives reasonable values for the core d levels and the

ionization potentials. Bsed upon the calculations given, ae Suggest that

it might be possible to rind a 3ingle exchange-correlation potential that

could be used to obtain good conduction bands for insulators and

semiconductors in a two-potential band calculation. Such a calculation

would use one potential for valence states and a second potential for

conduction states. Ths type of calculation not only uould be expected to

give better IHartree-plus band structures, but would also be more consistent

with what we know about correlation in semiconductors and insulators.



Page 9T)

REFEREN;CES

1. A. B. Kunz, R. S. Weidman, J. C. Boett.er, and G. Cochran,

Inter. J. of Quantum Chem.: Quantum Chemistry Symposium 14, 585 (1980)

2. F. Herman, R. L. Kortum, C. D. Kuglin, and J. P. Van Dyke, Methods in

Conputational Physics (Academic, New York, 1968) A, 193

3. J. C. Slater, Phys. Rev. 81, 305 (1951)

4. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965)

5. M. Born and R. Oppenheimer, Ann. Physik 87, 457 (1927)

6. T. A. Koopmans, Physica 1., 104 (1933)

7. S. T. Pantelides, D. J. Mickish, and A. B. Kunz, Phys. Rev. B 10, 2602

(1974)

8. J. E. Robinson, F. Bassani, B. S. Knox, and J. R. Schrietfer,

Phys. Rev. Lot. 9, 215 (1952)

9. P. S. Bagus, T. L. Gilbert, and C. C. J. Roothaan, J. Chem. Phys. 10

(1972)

10. R. YK. Nesbet, Rev. M:od. Phys. ., 28 (1961)

11. J. C. Phillips, Bonds and Bands in Semiconductors, (Acad. Press, New

York and London, 1973)

12. R. H. Parmenter, Phys. Rev. 100, 573 (1955)

13. 11. J. Shevchik, J. Tejeda, and 14. Cardona, Phys. Rev. B 9, 2627 (1974)

111. D. E. Eastman, 1'1. D. Grobman, J. L. Freeouf, and H. Erbudak,

Phys. Rev. B 9, 31173 (1974)

15. L. Lay, R. A. Pollak, F. H. t1cFeely, S. P. Kowalczyk, and

D. A. Shirley, Phys. Rev. B 9, 600 (1974)

16. T. C. Chiang, J. A. Knapp, M. Aono, and D. E. Eastman, Phys. Rev. B

21, 3513 (1980)

17. F. 11. Pollak, C. W. Higginbotham, and H. Cardona, J. Phys.



Page ql

Soo. Suppl. 21, 20 (1%6)

18. M. L. Cohen and T. K. Bergstreser, Phys. Rev. 11. , 789 (196)

19. J. R. ChelikoVsky and M. L. Colen, Phy3. Rev. B 111, 556 (1976)

20. V. K. Bashenov and V. I. Soloshenko, nys. Stat. Sol. 67, K73 (1975)



.V . ..

Im. Z ;F9

*~~ 
W T- 

-

p / I .~ ~~ ~~~ ." m ........... ...E.~.L!

I v. I

- T7 ,

mm m ,I.* fm .~:I p .r .. mnm mm.,

let 
. ;2 ~ . ~ . in .: ~ I. 

m  
m

__ __S_ _ _ 4:1_ __ _

r4__ _ __ _

o_ _ _ _ _ _ _

S. .T I-

(1) U%-



S :.. 55 * . F T .. ..

" I
. ..... , .. . . . ! . . .

----A ]I- -I _7

5 \ / ' I \. . . .*t S. i .. _ I I . ,I .-- , . ! !, .,
,i ... ... 5*- - - . .I 9.I\• 1 .. . - .

U-. .. - - -.. 5... .

I\ 11 5

m / I. * .i .5 e S l, S r . ,l ,e

- .. ... . . . . . ... . . . . . .. .. . .. . ... . . . . . . . i ... . . .. ,S .. . . f .... .
...... . .... .... --..--, .... I . I ,-.' •* .Zn

A .

... .. . . . .. ...5...... ........................... :....... ....... .... ,...--. ..... " .. :, , . .. . .. . .. ., .... ... ... ..5- , .. ..~~ S, , IS ,.S

" . . !" '" "" : ",- • a..... .- .. .... "S f .f d-"* " " " ... . -'.' . . .. ,5 " "
.!: ... . \5 : ........... ... • .. .... , . S/ S ,..... . ... . .. . i..

• . ... .~~ .. . .. . .. .. . . . .. .. - s .Sn... .... . . . . ... . ..... ...... .. ,*,.. _ ,.. . . . . .. . . . .. .. . .. . . ... . . . ......... 955 ... . .. .. S S .... ....
-i: -.: . - . .. .-. 1 , .. .--... ... ., .,. . -... . . . .... S ......... ,I.... . . 4 .. . . , . . . ,, .. . . . .. , . ••

. ....... ~ / -: .... .... .. . l. .... ,"'7. . ... % .... .. ... t.. . ...
5S,. . .. 5. .... . . . S'-- ., - -; - , . .. ... ......55~555 . st . ...... ...... '.. ., . S . f n'.... ,.. ..... . .... ... .. . o . .... , . .,

,-S.. . .,. ,. .. . . .. . .. . .. . • . . .. ... .. . . .. . . .. .. .

I . . ! .......... . --- ... -. ... .. ., ..

-. I , '/- , " s -

" , ~* ' S . . . ... :: ..... .. . .. .. . * . .... ... t. S US, : -, : I ,l-tl*S i '-, -X ......... ....... ...
-t.- n... .,-S- ..... S..-. . -.... ... .. . . ....... S . ..- ...... ...... i. .

._.-.. . _ . . . .. . .,_ _ _ __... ,

,/-/7... -. .. , I..... ......................... .____.__,_-'_____/"__t

................. ............ "I::i'-. "
• [i ".............. ................. ............... _ _ _ .' . "

|;: "- .5 :'.5 . ..... : . . . . . . . ., .. .. ' ,. ... . . . 7 ... . . . . . . . .

f, ___' T . . %. ... . .... - % .. .____ t--..0" -- ;



N V V .1_ :..j

- . an S

~V .

lo S C

1 "~e S a. , 
... ...... ............

a .

N V .
... .~. .....

S.

S .~~~~~~~~~~~ ...... .. S a .* a n n . ~aa . . ...

- - . , a.. ~ . a . ~.r . .a....a . .. a

Saa~ a- ~ a. .. .,. a a . .. ... . . . .. ...a.
* ~ ~~~~~~~~ . ... . -.. * n . .. aa . a.. ... ... .

.::2T 2: ..5. .a ... . ......

S , * .~ .- ~- S 5 '~5%



95

AX z 26? .5-17

,x

k4 17 6.o SV 6,~ 4.1753

o* lP~.e/A~#o top 0/ 7e V4a'/~,ce A-ra;r2

.Ri/V&O. f r'b- ed 2 (o -i s~t pa~d

c) ~ ~ ~ ~ h- ecl,,:i ns t~/ ge,7e

y)rl ;7;Ik?/*'>/i'~/
00 X?/
40 e-.t Pj 5 16re'i~ ~2



i__t 7Yi7;;0w~r I-her.e,
a - -, - -, I _-_

X; 3,12-.59o 1.2 1 23 .4k0 2 3 all afb

.2.3 2-0 V.5 3 47>~

V-0 6.7 6 ,7 5:99 6 41 6.0 6,

A .6 M -

04~ 1.-w Y,2 1g , 3 1.3 1~ 10 a, T0. 13
X~2 222.5- ;2 3.)j .2-6 2- 23 2,3 3r

075 11,
G~~2J~II 16,6 _____

2qatd2L t~tv% ~.b -d7u3 s,7. 517 64 3*e 8/es .,9/
I, P I

6,'> 4. 6,3-5-

oXe~/2trv 12.0q/f OX/i: 7 /J *



97

A AlP &6 -7~J-c,

- x pr A Aa p -4ios; 1 -0. a.; - ; I

L__ 
__ .1 

_ _ _ _

9.7 ;"3 10/ /11

!V/ V1 w 4,



C

CHAPTER 1

INTRODUCTION!

The electronic structure of surfaces is important in m.ny

scientific and technological fieldn, such as corrosion, semiconductor

devices, and catalysis. However, the understanding of fundamental solid

surface properties has lagged behind the progress in understanding of

bulk properties. This situation has been a result of' the lack of

experimental methods for the quantitative characterization of the

surface structure, and the theoretical complexities resulting from both

the loss of symmetry at the surface and any possible reconstruction

occuring at the surface. Recently developed experimental techniques

such as electron energy oss spectroscopy (ELS) ( ), two photon

picosecond spectroscopy ( ), surface extended x-ray absorption fine

structure (EXAFS) C ), and extended appearance potential fine

structure (EAPFS) ( ) have made accessible the experimental study of

the structural and electronic properties of real surfaces. The

X t - '7
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development of powerful computational methods has made possible the

theoretical study of these systems.

1.1 THE INITIAL ADSORPTION OF OXYGEN ONTO THE ALUINUH (100) SURFACE

Aluminum surfaces oxidize readily upon exposure to molecular

oxygen. Several expericental studies have been performed on the initial

oxidation of aluminum surtaces ( ). Ultraviolet photoemission

spectroscopy (UPS) ( ) and Auger spectroscopy ( ) studies have been

reported for many crystal orientations of aluminum, including the (100)

surface. LEED ( ), EXAFS ( ), and EAPFS ( ) studies have been reported.

Ultraviolet photoemission experiments ( ) have reported a valence

band resonance at 1.5 eV below the Fermi level for low oxygen exposure.

This resonance is attributed to the oxygen 2p band. The shirt or the

aluminum 2p core level has also been measured for both low and high

oxygen exposures. This shirt tow;ard lower energy is due to the dipole

moment arising from the charge transfer from the aluminum substrate to

the adsorbed oxygen. Work function measurements have also been reported

( ), with the work function found to decrease with increasing oxygen

exposure. This decrease has been interpreted as being a result of

incorporation of the electronegative oxygen adatoms beneath the aluminum

surface.
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LEED, EXAFS, and EAFFS techniques are able to Probe the surface

geometry of the aluminum plus oxygen adsorbate system, and thus these

studies are of special interest as they will help to differentiate

between various theoretical models. For low oxygen coverage, the

reported AI-0 bond length is 1.98 ( ), in agreement with previous

theoretical calculations ( ). For higher exposures, a value of 1.88 A

is reported (), which correspondsto the nearest-neighbor distance in

A1203.

For theoretical studies the (100) surface is ideal: calculated

electronic properties can be compared to existing Auger and UPS results,

and calculated bond positions and lengths can be compared with LEED,

EXAFS, and EAPFS results.

Lang and Williams (4) have studied theoretically the adsorption of

oxygen onto a jellium surface. While jellium is a good approximation to

bulk aluminum, it is not adequate to describe the local adsorption

process. For this reason, cluster studies, which are particularly well

suited to describe such local phenomena ( ), have been performed.

Harris and Painter ( ) and Hessmer and Salahub ( ), have studied the

adsorption of atomic oxygen onto the hole site of the Al (100) surface,

reporting electronic structures which agree with existing UPS data for

the initial adsorption of oxygen onto this alimunum surface. Studies of

the adsorption of oxygen at the remaining two high-symmetry sites of

this surface have not previously been reported. An accepted explanation

of the incorporation of oxygen atoms beneath the aluminum surface dces

not yet exist: the calculated electronic structure and binding
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potential curves for the on-top and bridge sites presented here should

shed light on this problem.

In this study, the interaction between adsorbate atoms (in this

case oxygen) and the aluminum (100) surface is theoretically

investigated by modeling the surface with a small number Of atoms and

then us'I the unrestricted Hartree-Fock approximation to calculate the

electronic structure and potential energy curves. From these potential

energy curves the binding energy, bond distance, and force constants of

the interaction are detertained. The calculated one-electron orbital*

give added insight into the chemisorption process, and calculated

densities of states are compared with photoemission data. This

calculational procedure is able to accurately describe the localized

bonding of an adsorbate onto a surface site, the aspect of chemisorption

considered rost important ( ).

The localized nature of the chemisorptive bond is indicated by

several kinds of experimental evidence. An adsorbed atom or molecule

can be observed to hop from one localized site to another ( ).

Infrared spectroscopy studies have round that the vibrational spectra of

intermediates on surfaces are often very similar to the spectra of

isolated molecules ( ). These experimental results reinforce the

intuitive notion that the chemisorptive bond is similar in nature to the

familiar, localized chemical bond.
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In general, the loss of symmetry in the direction perpendicular to

the surface leads to the choice between two drastic approximations in

theoretically modeling the surface-adsorbate interaction. The

maintenance of translationhl symmetry in the plane parallel to the

surface &reatly simplifies the computational difficulties and allows for

the use of the powerful methods developed for bulk band structure

calculations. The alternative approximation, simulating a small section

of the surface by a cluster of atoms, can more effectively describe the

localized interaction of the surface with a single atom.

Numerous calculations of the electronic structure of surfaces using

the approximation of a semi-infinite surface have been reported ( ).

The major drawback of this approuch is that, in general, a semi-infinite

monolayer of adsorbed atoms must be considered in a chemisorption

calculation. This limitation is a direct result of the symmetry

assumed, and therefore only qualitative calculations can treat a single

adatom on a semi-infinite surface.

By relaxing the symmetry requirements of the semi-infinite surface,

one gains increased fle::ibility and freedom. For instance, atoms can be

brought down over a variety of possible bonding sites. Roughened and

stepped surfaces, exposed corners, and small particles, which

experimental work indicates are often sites favored for chemisorption,

can easily be simulated by the cluster approach. Use of the

semi-infinite surface, by contrast, is limited to studies of the perfect

surface.
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Once the appropriate cluster has been chosen to simulate the

surface, the electronic structure or the cluster-adsorbate sy~tem must

be calculated. The method used here is the unrestricted Hartree-Fock

approximation, from which electronic wavefunctions, electron energy

eigenfunctions, and the total electronic energy are calculated. This

calculation is repeated at varying adsorbate-surfaceC separations, and

the potential energy curve can be generated from the differences in

total electronic energy.

The Hartree-Fock approximation as the method of calculation is

attractive due to two important advantages. The method is a convenient

first step towards an ab initio solution of the many-particle

Schrodin~er equation for a fernion system, and gives a useful

zeroth-order wavefunction for a perturbation calculation of the

many-Lody problem. Second, it is the most advanced calculational method

in "which eleentary physical intuition is applicable. In more complete

calculations, there is no longer a one-to-one correspondence between

particles and one-particle wavefunctions, and the independent particle

approxination is no longer applicable.

1.2 THE ELECTRONIC PROPERTIES OF THE SILICA SURFACE

The electronic structure of cry3talline silica (S1O2 ) ic Of

technological interest in, for example, the manufacture of solid state

electronic devices. Consequently, there has been considerable
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experimental effort in this arez. In a recent review of experimental

and theoretical results, Gr1scom ( ) has compiled much of the existing

data on the bul, properties or silica. The band gap has been found to

be about 8.9 eV, with a valence band width of approximately 11 eV.

Ultra-violet photo emission spectroscopy (UPS) studies by Ibach and Rowe

( ) have detected no occupied surface ztates within the band gap.

Williams ( ) has studied silica surfaces grown on crystalline Si and

found traps at 2 eV below the bulk silica conduction band edge. These

traps act like Coulomb centers with a positive charge. It is with the

sili.. surface and its defects that the current investigation is

concerned.

Several recent experimental studies have investigated surface

states of silica ( ). Schwidtal ( ) has found a radiation-induced

feature at 91 eV on the high-energy side of the Si L2 3 VV (V=valence)

transition in the Auger electron spectrum 'AES), and suggests that it is

due to an Si L23 VD (D:defect) transition. He further suggests that

this defect. is the Et center, which is a dar:gling singly-occupied sp 3

orbital of silicon. Ibach and Rowe ( ), Fujiwara and Ogata ( ),

Lieske and Hezel ( ), and Bermudez and Ritz ( ) have measured electron

energy loss spectra (ELS) and found peaks in the second derivative

spectrum at about 3.5, 5.0, and 7.4 eV (Fig. 1). Ibaeh and Rowe have

attributed these transitions to a partially oxidized surface region,

SiOx , where 1(x42. Fujiwara and Ogata ( ) have shown the states

associated with these transitions to be at the surface, and concluded

they were due to metastable SiOx . Lieske and Hezel ( ) have associated
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the final states with Si-Si bonds round in SiOX.  Mot recently,

Bermudez and Ritz ( ) have studied this transition, and found the final

state to be due to "a chemically stable species formed after rupture or

the silica network," and attributed these properties to a surface Si=O

double bond. For this bond to exist, the silica surface must undergo

reconstruction. Evidence for such reconstruction from low energy

electron diffraction (LEED) measurements is due to Janossy and Menyhard

( ). Also, Hochstrasser and Antonini ( ) have observed what they

believe to be recombination luminescence due to the rearranging of the

surface Si-O bonds immediately after cleaving. They measured the

lifetime of this luminescence to be less than 10-6 seconds.

Theoretical studies of the silica bulk electronic properties have

been performed ( ), and the calculated densities of states are in

good agreement with experiment, except for the AES peak at 91 eV and the

F10 peaks at 3.3, 5.0, and 6.8 eV, Both of these discrepancies can be

accounted for by allowing fur the existence of iclands of silicon in the

bulk SiO2. Bennett and Roth ( ) have calculated, using the fluckel

approximation, the electron - properties of many clusters W Lch

approximate silica, and in particular gave attention to defects. These

calculations were performed in the bulk; howevor, the clusters were

sufficiently small that they can be interpreted in terms of surface

defects, or in terms of a surface SiOx region. For oxygen deficient

clusters with a relaxation of the silicon atoms near the defect, the

calculated energy levels showed transitions at approximately the same

energy values. These are, however, probably due to small clusters (2-3
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atoms) of silicon in the SiO,. Laughlin, et l. ( ), using a tight

binding method, have calculated similar defects and have also found

states which appear in the gap, at about 5 eV above the valence band

edge. They have also studied the E' center, and found a level lying

just below the bulk conduction band. Pollmann an. Pantelides ( ) have

performed a calculation using a Green's function formulation on the

ideal terminated cubic (-cristobalitc) surface. Using an admittedly

crude mcdel for the surface, they found no states in the band gap.

The purpose of the current investigation is to study the silica

surface, giving particular attention to the three ELS peaks observed at

3.5, 5, and 7 eV. The cluster model is again employed, for the same

reasons given in section 1.1. Of the three models proposed by

experimentalists to account for these transitions, the only one which

has previously been calculated theoretically is theSiOx model. In

chapter 4 are presented calculations of the one-electron energy levels

for the remaining two models, the E' center, and the Si=O surface
3

double bond. A comparison is then made between the three models and

experiment.



N
@1 a

L 0iJ

z3P
'-4 1J p



METHOD OF CALCULATION

An exact solution to the wave equation for a large cluster of atoms

is not at present attainable. In fact, such a solution, while nice in a

mathematical sense, would be difficult to interpret physically. The ab

initia Hartree-Fock theory provides an approximate method of solution to

determine the electronic structure or a large cluster of atoms which is

both easily handled by contemporary computers and well suited for

straightforward interpretation.

2.1 HARTREE-FOCK THEORY

Ab ijt. Hartree-Fock theory is used to calculate the electronic

wavefunctions and energies for the finite clusters studied in this work.

The solids studied contain atoms of low atomic number; therefore

relativistic effects are small and will be ignored. Using the
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nonrelativistic Schr'dinger theory, the many-body wavefunction CT, which

is a function of electronic and nuclear space-spin coordinates, is

determined by the equation

where H is the many-body Hamiltonian

with

Z s

Here we have used atomic units, whereh, me, and e=1, the unit of length

is the bohr (1 bohr;; 0.529A), and the energy is given in Hartree (1 Hy

0.27.2 eV). Upper case letters refer to nuclear properties: RI is the

position of the Ith nucleus, and MI is its mass. Lower case letters

refer to electronic properties: ri is the coordinate of the ith

electron. The four-vector xi denotes both the spatial coordinates and

the spin of the ith electron.

The Schr~dinger equation is simplified by employing the

Born-Oppenheimer approximation ( ) to separate the nuclear and

electronic coordinates. The total wavefunction is assumed to be
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separable:

The nuclear wavefunction ,() is now a solution of the equation

while the electronic wavefunction, '(x,X), is a solution of the equation

L -

A solution oC this electronic SchF6dinger equation depends on the

nuclear coordinates R and in turn defines a potential energy function of

the coordinates:

z:r

which determines the motion of the nuclei. The problem is now reduced

to solving the electronic Schr'dinger iquation for a particular set of

nuclear coordinates. This equation cannot in general be solved exactly;

one therefore takes refuge in the Independent particle model for a

method of obtaining an approximate solution.

This approach is mathematically equivalent to a separation of

variables technique. The many-elnctron wavefunction, which is a

functional of the space-spin coordinates of all of the electrons, is

assumed to be a product of orbitals which are functions of one-electron

space-spin coordinates. However, the Pauli principle requires that the

many-electron wavefunction be antisymmetric under the exchange of any

two electrons. Therefore, the total electronic wavefunction is

approximated by an antisymmetrized product of one-electron orbitals:
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(7a

where ( is the antisymmetrizer. Since the Schrdinger equation is still

not in general solvable analytically, the variational principle is

introduced to obtain approximate solutions. The variational principle

states that the normalized expectation value of the Hamiltonian using

approximate wavefunctions is a rigorous upper bound to the exact energy.

The approximate wavefunction can then be varied to minimize the energy

and thereby be the best approximation to the exact waverunction.

Applying the variational principle to the electronic Schridinger

equation, 2nd using an antisymmetrized product of one-electron orbitals,

we obtain the Hartree-Fock equations:

CA q
whe-e F is the Fock operator:r/

"h"° ~I F "F° °'t°-" I 's. <;.,)I~, -: _-:
C IT-" Y )

i .'.I

The matrix elements ij are Lagrange multipliers, and have been

introduced to insure the orthonormality of the one-electron orbitals.

In general, unitary tr'anstormation can be performed on the orbital

space which diagonalizes this ratrix. The Hartree-Fock equations can

then be written in the standard form:

i rd oit

These integro-differential equations are normally solved via an
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iterative procedure. Thus, the electron orbitals are determined in the

average field of all the other electrons. The only constraints imposed

on the wavefunction are that the orbitals be orthonormal and be

functions of the space-spin coordinates of only one electron. This

level of approximation is called generalized Hartree-Fock (UHF) and has

yet to be solved, so further constraints are imposed to simplify the

calculation. The simplest constraint which can be imposed is to require

that the orbitals be eigenfunctions of Sz, i.e., the orbitals be of the

form:

(x'd

where ,(r) is the spatial part of the orbital, and -a and are the

spin-up and spin-down eigenfunctions of Sz, respectively. The form of

the Hartree-Fock equations is unaffected by this constraint, and this

level of approximation is known as the unrestricted Hartree-Fock (UHF).

The UIIF method has been used for numerous practical calculations of

atoms, molecules, and solids C ), and is the method used in this

study.

Additional restrictions may be placed upon the one-electron

orbitals in order to further simplify the calculations. The spatial

parts of the orbitals may be required to be symmetry eigenfunctions of

the cluster under consideration, i.e., each orbital must transform as an

irreducible representation of the space group of the cluster. Finally,

for doubly occupied orbitals the spin-up and spin-down spatial orbitals

may be assumed to be equivalent. This level of approximation is called
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the restricted Hartree-Fock method (RHF). One advantage of RHF is that

the one-electron orbitals are eigenfunctions of both spatial symmetry

and spin. However, for singly occupied orbitalo complications arise in

that the Fock operator differs for open and closed shells of the same

syretry, thus not allowing the single determinant to pvopcrly describe

the wavefunction. The UHF method, while not necessarily obtaining a

wavefunctinn which is an elgenfunction of spin and spatial symetry,

does give a lower (i.e., better) eigenfunction of energy. Since the

"best" solution to equation 2.6 is the wavefunction which gives the

lowest energy, the UHF method has therefore been used in this

calculation.

2.2 CLUSTER MODEL

Localized phenomena in solids, such as point defects or surface

adsorbates, can be modeled effectively by using a finite cluster of

atoms ( ). Since the cluster is intended to represent a much larger

system, one must apply appropriate boundary conditions for the cluster

to simulate the effects of the environment. These have been discussed

by Kunz and Klein ( ), and will be briefly reviewed here.

The solution to the Hartree-Fock equation (2.11) is sought for a

finite cluster. Suppose the region of the cluster is termed A, and the

remainder of the system, the environment of A, is termed E. The problem

is to partition the system rigorously into a cluster and an environment.

Let us consider the method of local orbitals of Adams, Gilbert, and
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Kunz( ). Here the Pock operator, F, of the entire system is divided

into a part which includes the kinetic energy, nuclear attraction of the

electrons and nuclei inside A, along with the electron-electron

potential for the electrons assigned to A, FA; and another part which

is the potential in A due to the environment, UA:

It is desired to study only part of the system, so instead or the normal

Hartree-Fock equation (2.11), consider instead the local orbitals

equation:

where W is an arbitrary Hermitian operator. Consider now an ionic

system. The potential due to the environment, UA, may be divided into

two parts: V is an ionic (Madelung) contribution and is long range,"A

and VS  is the remainder and is short range. Let W = VS. Haking use
A A

of the projector properties or and solving for the occupied

orbitals, equation (2.14) becomes

*1' (( %54/
L.

Considering o'nly the orbitals of equation (2.15) which lie in A# the

solutions should penetrate only weakly into E. Because V S does not

S

appreciably penetrate A, and because VA i is cancelled by VSj in the

limit of self-consistency, the approximate equation for the cluster,

including the interaction with the remainder of the system, is then
C. pt
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This approxi=ate equation is simply the equation for the wavefuncion in

the cluster of interest imbedded in the Kadelung field of the remainder

of the solid. The eigenvalues 71'of equation (2.14) or the approximate

equation (2.16) represent the eigenvalues %. of the infinite solid only

in the limit that the orbitals Ii are localized in the region A.

A basis function expansion is used to determine the unrestricted

Hartree-Fock orbitals. Here gaussian type orbitals have been used for

this expansion. This type of function offers the advantage of having

analytic solutions for the required integrals; however, u.iny such

functions are required to achieve the desired accuracy. Cartesian

gaussian functions have been used. The spatial part of these rfuctions

has the form:

1 -1..4 rti

The determination of the gaussian exponents, -,j, for atoms and ions has

been the subject of considerable study, and tabulated sets exist in the

literature. An all-electron calculation including the core electrons of

aluminum and silicon would be impractical, so the ab initio effective

potential of Topiol, et al. ( ) is used to replace these core

electrons. The integrals are performed using the standard POLYATOM

integrals progrc ., and the unrestricted Hartree-Fock calculations are

done with the G. T. Surratt program UHFONE.
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THE INITIAL ADSORPTION OF OXYEN ONTO THE

ALUMINM (100) SURFACE

Aluminum crystalizes in the FCC form, with a lattice constant of

4.05 . Aluminum is a netal, and the bulk electronic strunture is

approximated very well Ly the "Jellium" model. However, attempts to

employ this model to describe the local chemisorption process (10) have

produced results which are not consistent with experiment (6). Cluster

techniques have been used to study the chemisorption process (11,12,40)t

with results which agree well with experiment if care is taken in

choosing the cluster.

Chemisorption is a localized process, and as such the cluster model

should provide an accurate description. The difficulties that one

encounters here are resultant from the fact that aluminum is a metal,

and as such is not well described by a small cluster of atoms (fig.

3.1). One must, therefore, take into account the size of the cluster
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used to describe the substrate. These effects will be discussed, along

with the binding energy of the oxygen atom for each surface site

considered. Calculated one-electron energy levels for neae binding

sites are compared with the results of photoemis3ioi exper!ieMts.

3.1 RESULTS OF CALCULATIONS

The positions of the aluminum centers in the clusters are chosen to

reproduce the unreconstructed structure of the aluminum (100) surface.

It has been assumed here that the lattice does not undergo signifigant

distortions at the surface. Th1s has been shown to be true from

comparison of experimental and theoretical LEED studies of clean

aluminum surfaces (1l4).

As pozsible surface sites for the adsorbed oxygen atom, considered

here are the three high-symmetry points of the (100) surface (fig.

3.2). These are a position directly above an aluminum center of the

first substrate layer (on-top position); the position central to four

aluminum atoms of the first layer, above a second layer atom (hole

position); and above (or below) the midpoint of a line connecting two

nearest neighbor aluminum centers (bridge position).

The interaction of oxygen with the aluminum surface at the on-top

position has been modeled here using two clusters: AlO, with a single

aluminum atom representing the surface; and A190, with five first layer



atoms and four second layer atoms modeling the surface. The binding

energy of the oxygen atom to the aluminum surface is .3hown as a function

of its distance above the surface In figure 3.3. For both surface

clusters, the equilibrium d.stance is about 3.5 bohr. The binding

energies differ between the two clusters; this energy is 2.25 eV for

the AlO cluster, and 1.36 eV for the A190 cluster. The charge transfer

from the aluminum surface to the oxygen atom is about 0.7 niectron in

both cases.

For the hole site, the aluMinum surface is modeled with two

'*lusters: A150, which has four aluminum centers in the first surface

layer, and the central aluminum in the second layer; and Algo, which is

the AlsO cluster, to which four addition3l second layer aluminum centers

are added. The importance of including the second layer atoMs at this

site has bt.-.n shown by previous theoretical studies of the interaction

of oxygen with metal surfaces (45). The oxygen binding energies as a

function of the distance above the surface plane are shown for these

cluster3 in. figure 3.4. Both clusters have a minimum total energy

(maxinum binding energy) when the oxygen center is about 0.2 bohr below

the plane of the first surface layer. The cluster' with only one second

layer aluminum atom is found to bind the oxygen adsorbate by 5.4 eV,

with a charge transfer to the oxygen of 1.4 electrons. The larger

cluster is found to bind the oxygen by 4.8 eV, with a charge transfer of

1.3 electrons to the adsorbed oxygen.
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Tile bindinpr energies computed for this site, as well as those for

the bridge rite, muat be carefully extracted from the calculated total

Cner,s. %Mace the oxygen atom penetrates into the cluster or aluminum

'entcrs, the basis .unctions used to describe the electronic

wr.veNnctiorop assooiated with the oxygen adorbate may improve the

description or the substrate electronic structure, thus lowering its

total energy. This improverienz in the substrate wavefunction can he

integrated into the caculation of the binding energy by simply including

the basis functions of tho oxygen atom when calculating the total energy

of the substrate cluster.

The bridge site has been modeled here with three different

clusters. The first cluster consists of two nearest neighbor aluminum

centers of the surface, and an oxygen atom above the midpoint of the

line connecting these centers. Thc second cluster contains these two

centers, as well as two additional centers beneath them from the second

aluminum layer. For the final cluster, two aluminum centers from the

third layer are added. The ir.clusion of the deeper layer aluminum

centers at this bonding site is necessary because the oxygen atom

penetrates the surface, and can move vertically in a "tunnel" between

pairs of aluminum centers (see fig. 3.2). The binding energies of an

oxygen atom interacting with these aluminum clusters are shown in figure

3.5. For the cluster with two aluminum centers, the oxygen adsorbate is

bound 1.3 bohr above the plane of the surface. A charge of 1.25

electrons is transfered to the oxygen atom, which is bound by 3.1 eV.

With the inclusion of the two second layer aluminum centers in the
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cluster, the equilibrium position or the oxygen center mcves to 1.65

bohr beneath the surface, which is just above halfway between the two

aluminum layers. The binding energy is found to be 3.8 eV, with a

charge transfer of 1.4 electrons to the oxygen. Inclusion of the third

aluminum layer produces no signifigant change in these results;

however, this cluster does show that the oxygen center does not want to

move deeper into the bulk material, as the total energy of the system is

round to be lowest for an oxygen center position just below the first

surface layer.

3.2 DISCUSSION OF RESULTS

For the initial stages or adsorption, the oxygen adsorbate is

clearly bound below the aluminum surface. The binding is strongest at

the hole site. An electric charge or about 1.35 electrons is also

transfered to the adsorbed oxygen. These results are in agreement with

previously reported work function studies, in which a reported decrease

in the work function or the aluminum surface with increasing oxygen

exposure (up to one monolayer or coverage) has been attributed to the

penetration or negative oxygen ions beneath the aluminum surface (6).

The ultra-violet photoemission spectrum has been reported for low

oxygen coverage on the aluminum (100) surface (5); this spectrum is

shown in figure 3.6. Also shown is the projected density or states for

the oxygen adsorbate previously calculated by Messmer and Salahub (12)
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for an oxygen position at the aluminum surface at the hole site. These

authors did not calculate the electronic structure for an oxygen

position belo . the surface, nor did they study the interaction of an

oxygen adsorbate with any of the other high-symnetry (100) surface

sites.

As reported elsewhere (110), the one-electron energy levels of this

calculation are in agreement with experiment and previous theory. These

energy levels are shown in figure 3.6 for both the hole and bridge

sites, with the oxygen position corresponding to the minimum total

energy for the cluster. For both sites, the energy levels reported here

are those of the largest cluster calculited.,

Photoemission experiments studying the aluminum core levels at low

oxygen exposures have been reported, with a reported shift in the

aluminum 2p energy of 1.3eV toward lower energy (5). In the present

calculation, the shift of the aluminm core levels is found to be 1.1 eV

in the same direction. The cause of this core level shift is the

electric dipole produced by the charge transfer from the aluminum

substrate to the oxygen atom upon adsorption. It has been noted by

Flodstr~m, et al. that the aluminum core level shift increases to a

value of 2.6 eV at higher oxygen exposure (about one monolayer of

coverage), thus lowering these orbital energies to the values found in

A1203. These results are evidence for a two stage oxidation process,

with the first step being chemisorption at the hole site, and the second

step being incorporation of oxygen beneath the aluminum surface.
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The agreement between the calculated one-electron energies for the

hole site presented here, along with those of Messmer and Salahub, and

reported experimental UPS spectra tend to support the idea that the

initial chem1sorption of oxygen occurs at the hole site, as one would

expect from the binding energies reported in section 3.1.

The hole site is also favored by extended appearance potential fine

structure (EAPFS) measurements. Using this technique, den Boer, et II.

(4) have reporteJ a nearest neighbor oxygen-aluminum distance of 1.98 A,

or 3.74 bohr. 'eVssmer and Salahub have reported a value of 2.02 A (3.82

bohr), and the results of the calculations presented here place the

oxygen at 1.92 A (3.63 bohr) from the nearest aluminum center for the

hole site. For higher oxygen exposure, den Boer)et al. have reported

an experimental value of this nearest neighbor distance of 1.91 1. This

figure is probably an average of the two nearest neighbor spacings found

in A1203 ; these being 1.86 1 (3.51 bohr) and 1.97 A (3.72 bohr). The

longer of these spacings corresponds to oxygen binding at the hole site,

while the shorter corresponds to oxygen adsorption at the slightly less

energetically favorable bridge site. The present calculation places the

nearest neighbor distance at the bridge site at 1.71 X, or 3.25 bohr.

The results presented above, along with previous theoretical and

experimental results, show that for the initial interaction of oxygen

with the aluminum (100) surface, chemisorption takes place at the hole

site. The present studies have extended previous theoretical

understanding of the interaction of oxygen with this surface to include

the two additional high-symetry (100) sites. Work function, UPS, and
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EAPFS studies have reported that the naturc of tChis interaction changes

w~hen the oxygenl coverage approaches one monolayer; the theoretical

results presented here lead one to conclude that at this coverage,

oxygen begins to adsorb at the bridge site, since the energitically more

favorable hole Sites are already occupied. The chemisorption or oxygen

at the bridge site allows for the incorporation of thca oxygen adatoms

beneath the aluminum surface at high levels of oxygen exposure$ leading

to the formation of the oxide A1203.



THE ELECRONIC PROPERTIES OF THE SILICA SURFACE

Silica occurs in six different crystalline forms, as well as the

amorphous form. All forms of SiO2 are based on the SiOl tetrahedron,

and differ in the Si-O-Si bonding angle. The crystalline form most

often studied experimentally Is o-quartz, and it is this form which we

have used here. #-quartz is hexagonal in structure, with three SiO2

molecules in each unit cell. The Si-O-Si bond nngle is 14.

The silica surface may be described accurately using a cluster of a

small number of atoms. Indeed, calculations on the bulk material ( )

have used the cluster approach. To take into account the effect of the

neighboring bulk, appropriate boundary conditions are imposed, as has

been discussed in chapter 2. In the case of silica, the cluster is

embedded in a point charge array, with the charge transfer determined in

a self-consistent ,anner. This gives the proper electrostatic potential

in the region of the surface cluster, and also provides for charge
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neutrality. Previous calculations have either employed a free space

termination, or imposed periodic boundary conditions which require

dafects to be present in all unit cells of the crystal.

The clusters used here for the bulk calculations were an SiO4

tetrahedron, and an Si-O-Si molecule. Both clusters were embedded in a

point charge array of 3*3*3 unit cells in size. The calculations of the

surface were done using a cluster consisting of the surface silicon

atom, its two neighboring oxygen atoms, and the two adjacent silicon

atoms to form two joined Si-O-Si molecules. This clunter was embedded

in a point charge array of 3*3*2 unit cells. The position of the

surface silicon atom was adjusttd in order to minimize the total energy.

An oxygen atom was then placed above the surface silicon in order to

study the surface bonding state.

The one-electron energy levels calculated Ifor the bulk SiC2 are in

good agreement with experiment and previous theory (fig. 4.1). The

calculated band gap is 9.4 eV, as compared to 8.9 eV for experiment.

7he valence band width is calculated to be 9.2 eV, while experimental

measuremnents give about 11 eV. The oxygen 2s band is found at 30.3 eV

below the conduction band, while experiment places it 28 eV below. The

valence bands are found to be mostly oxygen 2p, with some silicon 3s and

3p character mixed in. This is expected, and agrees with the charge

transfer of nearly one-half of an electron from each silicon to each of

4 oxygen atoms, or a configuration of Si2+0- , as determined by a

Nulliken population analysis. This agrees with the observation that

silica has both ionic and covalent properties.
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For the unreconstructed surface, the E' center is found to have a

singly occupied energy level 1.7 eV above the top of the bulk valence

band (fig. 4.2). Stephenson and Binkowaki ( ) have observed, using

XPS, an occupied energy level at 0.75 eV above the bulk valence band

edge for samples cleaved in vacuum. They believed this level to be an

intrinsic feature of the bulk Si0 2. However, their sampling depth is

only about 30 A, so it is probable that this level is an E' center at or

near the surface ( ). The method of sample preparation which they have

used (grinding) could easily have caused these broken bonds to be formed

( ). It is energetically favorable for an oxygen atom to bind to this

surface silicon atom, with a binding energy of 5.1 eV, which is

considerably greater than the 2.6 eV per oxygen atom necessary to

dissociate molecular oxygen. le shall now turn our attention to this

configuration, which is the Si=O surface double bond.

The occupied one-electron energy levels of the surface state are

all below the top of the bulk valence band. This is consistent with

optical studies, which have found no occupied surface states in. the band

gap ( ). The lowering of the valence band can be attributed to the

O-Si-O bond angle at the surface being greater than the perfect

tetrahedral 109 angle. The bottom of the conduction band for the

surface is found to be 4.6 eV below the bulk conduction band edge. The

occupied valence surface states can be described as bonding and

non-bonding states between the adsorbed oxygen and the surface silicon
A

atom (fig. 4.3a,b). When a surface electron is excited out of the

valence band, an anti-bonding orbital (fig. 4.3c) drops out of the
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conduction band and is singly occupied. Its energy lowers considerably

due to relaxation, and is found at 1.4 eV above the top of the bulk

valence band (fig. 4.2). The position of the oxygen atom is 0.1 a. u.

farther out from the surface silicon atom for this excited state,

relative to its ground state position. This energy difference is in

good agreement with Bermudez and Ritz ( ), and the transition from a

non-bonding to an anti-bonding orbital of the surface bond is as they

have described. The energy change associated with this transition is

6.1 eV, which is in agreement with the experimental value of 5.0 eV if

correlation effects are considered. The 7.4 eV transition can be

understood in terms of valence band structure, with transitions from

levels in the bonding part of the valence band to the same anti-bonding

orbital.

It is noted that this model, the Si=O surface bond, does not

predicat the surface electronic transition at 3.5 eV that is seen in the

second derivative ELS spectra. It has been shown by Gallon and

Underwood ( ) that this peak is in fact an artifact of the second

derivative mode of detection, and it is not seen in the non-derivative

ELS spectrum. They argue that the 3.5 eV peak is produced by the

overlap of the "wings" of the primary and the 5.0 eV peaks. The

calculations presented here agree with this interpretation.

One remaining point of controversy is the difference between XPS

and UPS in discribing the top of the valence bands of SiO2 (fig. 4.4)

There exists at this time no agreement as to the cause of this

discrepancy. The calculations presented here do, however, favor one
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explaination. The two spectra are spatially sensitive to different

parts of the sample: XPS is sensitive to the bulk for initial states

with small binding energy, while 40.8 eV UPS is surface sensitive. In

both the XPS and UPS techniques, the kinetic energy of the photoelectron

is sufficiently large that the final state may be approximated by a

plane wave. 'herefore the difference between the XPS and the UPS

spectra must reflect the difference between the bulk 4nd surface valence

band densities of states. Comparison between the XPS spectrum and the

calculated bulk density of states, and between the UPS spectrum and the

calculated surface density or states (for the reconstructed surface)

shows that 3uch an explanation does indeed account for the difference in

the two spectra (rig. 4.4).

The reconstructed silica surface has been studied in order to

determine the nature of the low energy loss ELS peaks. We have found

agreement between the theoretically calculated one-electron energy

levels presented here and previous experimental results. Of the three

models which can account for the peaks, namely a partly oxidized surface

region SiOx, the E, center, and the Si=O double bond, we conclude that

the last is most likely. Support for this conclusion comes from

experimental evidence for reconstruction, and from the large binding

enzergy of the oxygen atom to the surface.
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CONCLUSIONS

In this study, the ab iniitio unrestricted hartree-Fock nethod has

been used to calculate the bulk and surface electronic structure of of

silica, and to study the initial interaction of oxygen with the aluminum

(100) surface. In both of these materials, the cluster model has been

shown to be a useful tool in the calculation of the electronic

structures.

In studying the interaction af oxygen with the aluminum (100)

surface, the size of the aluminum cluster used had a considerable effect

on the results. Since aluminum is a metal, a fairly large cluster of

atoms is needed to describe the substrate accurately. That the cluster

model worked at all for this calculation is due to the fact that

chemisorption is a local process.



It has been shown that an oxygen adsorbate is bound nost strongly

at the hole site of the clean aluminum surface. The equilibrium

position of the adsorbed atom is about 0.2 bohr below the plane of the

3uvfnce. A charge of 1.3 electrons is transfered from the aluminum

3ubstrate to the oxygen adsorbate, This charge transfer creates an

electric dipole which causes the aluminum core levels to be shifted

downward in energy by 1.1 eV. Previous experiments studying the work

function, UPS spectrum, and the EAPFS have reported results for the

initial adsorpticn of oxygen onto this surface which are in agreement

with the results of the calculations presented here.

These experimental results have also shown that the nature of the

ad3orption process changes at about one nomolayer of coverage. The

theoretical studies reported here lead one to conclude that at this

coverage the energetically mo!t favored sites for chomisorption, the

hole sites, become fully occupied, and adsorption continues at the

bridSe site. It is adsorption of oxygen at this site which allows for

incorporation of oxygen beneath the aluminum surface, and leads to the

formation of the oxide A1203.

Also reported here is a study of the bulk and surface electronic

structure of silica (W-quartz). The cluster zodel was again used. The

bulk solid and the surface were both modeled with clusters of a few

atoms, plus the appropriate boundary conditions. In this case, the

boundary condition imposed was a point ion array to provide for charge

neutrality and to provide the correct Madelung field.



For the silica bulk, the calculated one-electron energy levels were

compared with experimental XPS spectra, and the agreement was found to

be excellent, as reported in chapter 4. For the reconstructed silica

surface, the structure of the Si=O double bond was found to be the

energetically most favorable surface configuration. The electronic

structure of this surface bond is able to explain the low energy ELS

peaks seen experimentally. This calculations reports a value of 6.1 eV

for the lowest energy transition, as compared to 5.0 eV for the

experimental result.

Finally, the difference in the reported valence band structures as

measured in XPS and UPS experiments is explained. The XPS method is

sensitive to the bulk material, while UPS is surface sensitive.

Comparison of these spectra with the calculated valence band energy

levels shows good agreement between the theory presented here and the

experimenal spectra.

The ab initio unrestricted Hartree-Fock method, along with the

cluster model, has been shown to accurately describe the local

electronic peoperties of many systems. In this report, this method has

been shown to be successful in describing the adsorption of oxygen onto

the aluminum surface, and in describing the bulk and surface electronic

structure of SiO 2 . This technique has also been used to successfully

calculate the electronic structure of semiconducting polymers, including

defects and impurities (46), and in the description of the excitonic

structure of crystalline silicon (47).
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